Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4716-4726, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38325000

RESUMO

This work shows the first example of using intramolecular London dispersion interactions to control molecular geometry and quantum transport in single-molecule junctions. Flexible σ-bonded molecular junctions typically occupy straight-chain geometries due to steric effects. Here, we synthesize a series of thiomethyl-terminated oligo(dimethylsilmethylene)s that bear [CH2-Si(CH3)2]n repeat units, where all backbone dihedral states are sterically equivalent. Scanning tunneling microscopy break-junction (STM-BJ) measurements and theoretical calculations indicate that in the absence of a strong steric bias concerted intramolecular London dispersion interactions staple the carbosilane backbone into coiled conformations that remain intact even as the junction is stretched to its breakpoint. As these kinked conformations are highly resistive to electronic transport, we observe record-high conductance decay values on an experimental junction length basis (ß = 1.86 ± 0.12 Å-1). These studies reveal the potential of using intramolecular London dispersion interactions to design single-molecule electronics.

2.
J Am Chem Soc ; 145(37): 20588-20594, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683101

RESUMO

This manuscript describes skeletal isomerization strategies to install one to four quaternary germanium atoms in the sila-adamantane core, in a cluster analogy to precision germanium doping in silicon-germanium alloys. The first strategy embodies an inorganic variant of single-atom skeletal editing, where we use a sila-Wagner-Meerwein bond shift cascade to exchange a peripheral Ge atom with a core Si atom. We can install up to four Ge atoms at the quaternary diamondoid centers based on controlling the SixGey stoichiometry of our precursor. We find that bridgehead Ge centers can be selectively functionalized over bridgehead Si centers in SiGe adamantanes; we use this chemistry in conjunction with scanning tunneling microscopy break-junction (STM-BJ) measurements to show that Si8Ge2 adamantane wires give a 60% increase in single-molecule conductance compared with Si10 adamantanes. These studies describe the first quantum transport measurements in sila-diamondoid structures, and demonstrate how main-chain Ge doping can be used to increase electronic transmission in sila-diamondoid-based molecular wires.

3.
Phys Chem Chem Phys ; 23(16): 9643-9659, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870983

RESUMO

This article reviews the scope of inorganic cluster compounds interrogated in single-molecule break-junction measurements. This body of work lies at the intersection between the fields of inorganic cluster chemistry and single-molecule electronics, where discrete inorganic cluster molecules are used as the active components in molecular electronic circuitry. We explore the breadth of transition metal and main group cluster compounds that have been studied in single-cluster junctions, largely within the context of scanning tunnelling microscopy break-junction (STM-BJ) measurements. Our discussion centers on how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects such as room-temperature current blockade, sequential tunneling, voltage-gated conductance switching, destructive quantum interference, and high thermoelectric currents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA