Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
2.
Cell ; 152(4): 703-13, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415221

RESUMO

Although several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes (1000G) Project and the composite of multiple signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes 35 high-scoring nonsynonymous variants, 59 variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate nonsynonymous variant in Toll-like receptor 5 (TLR5) and show that it leads to altered NF-κB signaling in response to bacterial flagellin. PAPERFLICK:


Assuntos
Técnicas Genéticas , Genoma Humano , Estudo de Associação Genômica Ampla , Mutação , Animais , Bactérias/metabolismo , Flagelina/metabolismo , Projeto HapMap , Humanos , NF-kappa B/metabolismo , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Transdução de Sinais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
3.
Am J Hum Genet ; 111(2): 295-308, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232728

RESUMO

Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.


Assuntos
Predisposição Genética para Doença , Hipersensibilidade , Inflamação , Humanos , Estudo de Associação Genômica Ampla , Hipersensibilidade/genética , Inflamação/genética , Subunidade p50 de NF-kappa B/genética , Biobanco do Reino Unido
4.
Nature ; 597(7877): 522-526, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552258

RESUMO

Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2-4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Totaiete ma) Islands (11th century), the western Austral (Tuha'a Pae) Islands and Tuamotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua 'Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately AD 1200 via Mangareva.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Feminino , História Medieval , Humanos , Masculino , Polinésia
5.
Nature ; 583(7817): 572-577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641827

RESUMO

The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.


Assuntos
Fluxo Gênico/genética , Genoma Humano/genética , Migração Humana/história , Indígenas Centro-Americanos/genética , Indígenas Sul-Americanos/genética , Ilhas , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , América Central/etnologia , Colômbia/etnologia , Europa (Continente)/etnologia , Genética Populacional , História Medieval , Humanos , Polimorfismo de Nucleotídeo Único/genética , Polinésia , América do Sul/etnologia , Fatores de Tempo
6.
Lancet ; 403(10426): 533-544, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310910

RESUMO

BACKGROUND: Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS: We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 µg R21 plus 50 µg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS: From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION: R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING: The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.


Assuntos
Vacinas Antimaláricas , Malária , Nanopartículas , Saponinas , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anticorpos Antivirais , Burkina Faso , Método Duplo-Cego , Imunização , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversos
7.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121873

RESUMO

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Assuntos
Doenças Inflamatórias Intestinais , Hanseníase , Humanos , Criança , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Malaui , Mali , Hanseníase/genética , Proteínas de Transporte de Nucleosídeos/genética
8.
Am J Bot ; : e16318, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654555

RESUMO

PREMISE: Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids. We therefore expect that genera with many dioecious species have fewer polyploids, leading to a negative association between polyploidy and dioecy across genera. METHODS: We used three publicly available databases to determine ploidy and sexual systems for 131 genera and 546 species. We quantified (1) the relationship between the frequency of polyploid species and the frequency of dioecious species across genera, and (2) the proportion of polyploids with hermaphroditism and dioecy across species, adjusting for phylogenetic history. RESULTS: Across genera, we found a negative relationship between the proportion of polyploids and the proportion of dioecious species, a consistent trend across clades. Across all species, we found that sexual system (dioecious or not) was not associated with polyploidy. CONCLUSIONS: Polyploids are rare in genera in which the majority of species are dioecious, consistent with the theory that self-reproduction favors polyploid establishment. The low frequency of polyploidy among dioecious species indicates the association is not as widespread as previously suggested. Our findings are consistent with previous studies identifying a positive relationship between the two traits, but only if polyploidy promotes a transition to dioecy, and not the reverse.

9.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196614

RESUMO

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Assuntos
COVID-19 , Infecções por HIV , Adulto , Humanos , HIV , ChAdOx1 nCoV-19 , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Ativação Linfocitária , Vacinação , Infecções por HIV/tratamento farmacológico , Imunoglobulina G , Anticorpos Antivirais
11.
Nature ; 546(7659): 485-491, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640263

RESUMO

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

12.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999208

RESUMO

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Adenoviridae/genética , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
13.
Lancet ; 398(10304): 981-990, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480858

RESUMO

BACKGROUND: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44-45 weeks) between the first and second dose, and response to a third dose as a booster given 28-38 weeks after the second dose. METHODS: In this substudy, volunteers aged 18-55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44-45 weeks after first dose) or a third dose of the vaccine (28-38 weeks after second dose). Data from volunteers aged 18-55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. FINDINGS: Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8-12 weeks: 267 [83%] of 321; 15-25 weeks: 24 [7%]; or 44-45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8-12 weeks: 115 [44%] of 261; 15-25 weeks: 116 [44%]; and 44-45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44-45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83-91·08] vs 1·75 EUs [1·60-1·93]). 32 participants received a late second dose of vaccine 44-45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525-1764] with an 8-12 week interval; 1860 EUs [917-4934] with a 15-25 week interval; and 3738 EUs [1824-6625] with a 44-45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047-6420]) than 28 days after a second dose (median 1792 EUs [IQR 899-4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127-389] immediately before the third dose to 399 SFUs per milion PBMCs [314-662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. INTERPRETATION: An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. FUNDING: UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Imunogenicidade da Vacina/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinação , Adulto , ChAdOx1 nCoV-19 , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Reino Unido
14.
Lancet ; 397(10287): 1809-1818, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964223

RESUMO

BACKGROUND: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS: In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 µg R21 plus 25 µg MM, group 2 received 5 µg R21 plus 50 µg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS: From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION: R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING: The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Burkina Faso , Método Duplo-Cego , Feminino , Antígenos de Superfície da Hepatite B , Humanos , Lactente , Malária Falciparum/prevenção & controle , Masculino , Nanopartículas/administração & dosagem , Modelos de Riscos Proporcionais , Saponinas/administração & dosagem , Resultado do Tratamento
15.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822551

RESUMO

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Assuntos
Vacinas Antimaláricas , Malária , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genética
16.
Proc Natl Acad Sci U S A ; 116(33): 16479-16488, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346090

RESUMO

Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Sequência Conservada , Regulação para Baixo , Evolução Molecular , Células HeLa/metabolismo , Humanos , Inflamação/patologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Lisossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Molécula 1 de Interação Estromal/metabolismo
17.
Lancet ; 396(10249): 467-478, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32702298

RESUMO

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Acetaminofen/uso terapêutico , Adenovirus dos Símios/genética , Adulto , Analgésicos não Narcóticos/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Imunização Secundária , Imunoglobulina G/sangue , Masculino , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Método Simples-Cego , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Reino Unido , Vacinas Virais/administração & dosagem
18.
Proc Natl Acad Sci U S A ; 115(11): 2687-2692, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29490918

RESUMO

Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.

19.
Genes Immun ; 21(1): 63-70, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462703

RESUMO

Invasive group A streptococcal (GAS) disease is uncommon but carries a high case-fatality rate relative to other infectious diseases. Given the ubiquity of mild GAS infections, it remains unclear why healthy individuals will occasionally develop life-threatening infections, raising the possibility of host genetic predisposition. Here, we present the results of a case-control study including 43 invasive GAS cases and 1540 controls. Using HLA imputation and linear mixed models, we find each copy of the HLA-DQA1*01:03 allele associates with a twofold increased risk of disease (odds ratio 2.3, 95% confidence interval 1.3-4.4, P = 0.009), an association which persists with classical HLA typing of a subset of cases and analysis with an alternative large control dataset with validated HLA data. Moreover, we propose the association is driven by the allele itself rather than the background haplotype. Overall this finding provides impetus for further investigation of the immunogenetic basis of this devastating bacterial disease.


Assuntos
Antígenos HLA/genética , Cadeias alfa de HLA-DQ/genética , Infecções Estreptocócicas/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genes MHC da Classe II , Predisposição Genética para Doença/genética , Antígenos HLA/imunologia , Cadeias alfa de HLA-DQ/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade
20.
Infect Immun ; 88(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31740525

RESUMO

Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. In this study, we investigated combining two liver-stage antigens, P. falciparum LSA1 (PfLSA1) and PfLSAP2, and investigated the induction of protective efficacy by coadministration of single-antigen vectors or vaccination with dual-antigen vectors, using simian adenovirus and modified vaccinia virus Ankara vectors. The efficacy of these vaccines was assessed in mouse malaria challenge models using chimeric P. berghei parasites expressing the relevant P. falciparum antigens and challenging mice at the peak of the T cell response. Vaccination with a combination of the single-antigen vectors expressing PfLSA1 or PfLSAP2 was shown to improve protective efficacy compared to vaccination with each single-antigen vector alone. Vaccination with dual-antigen vectors expressing both PfLSA1 and PfLSAP2 resulted in responses to both antigens, particularly in outbred mice, and most importantly, the efficacy was equivalent to that of vaccination with a mixture of single-antigen vectors. Based on these promising data, dual-antigen vectors expressing PfLSA1 and PfLSAP2 will now proceed to manufacturing and clinical assessment under good manufacturing practice (GMP) guidelines.


Assuntos
Adenovirus dos Símios/genética , Antígenos de Protozoários/imunologia , Portadores de Fármacos , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Vaccinia virus/genética , Animais , Antígenos de Protozoários/genética , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Proteínas Recombinantes de Fusão/genética , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA