Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 123: 103890, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879911

RESUMO

Thermal tolerance data are important for identifying the potential range of non-native species following introduction and establishment. Such data are particularly important for understanding invasion risks of tropical species introduced to temperate climates and identifying whether they can survive outside tropical regions. A breeding population of the tropical clawed frog (Xenopus tropicalis) was recently discovered in west-central Florida, U.S.A. This fully aquatic species is native to the rainforest belt of west Africa and has not been documented outside its native range. Because of the lack of invasion history, data are sparse on the thermal limits for this species. We used chronic lethal and critical thermal methodologies to investigate thermal tolerance on adult stages and critical thermal methods on tadpoles. Because of our use of both chronic and critical methodologies, we also examined the literature to reveal common methods used to investigate thermal minimum and maximum temperature in amphibians, which were found to be dominated by the critical maximum. Chronic lethal temperatures for adult X. tropicalis were 9.73 °C and 36.68 °C. Critical temperatures were affected by acclimation temperature and life stage; adults were more tolerant of extreme temperatures. Based on these critical thermal data and the fact that breeding tends to occur when temperatures are suitable for survival, tadpole stages are unlikely to be affected by extreme temperatures. Instead, range expansion in Florida will likely be limited by the adult stages. Our findings indicate that the tropical clawed frog could occupy much of southern Peninsular Florida and other tropical and subtropical regions worldwide.

2.
J Hand Surg Am ; 47(12): 1202-1210, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241537

RESUMO

Kinematic motion analysis (KMA) is well established in the assessment of gait and lower-extremity kinematics; however, its application to upper-extremity (UE) pathology has been limited. This review provides a concise overview of information related to the KMA technology that is pertinent to the clinician. Advantages of KMA for UE assessment are discussed, along with barriers to implementation. An example of KMA used for perioperative assessment of a patient undergoing a distal humerus osteotomy for the correction of arthrogrypotic internal rotation deformity is provided to illustrate its clinical feasibility. Kinematic motion analysis has exciting potential to advance the evaluation and management of UE disorders; however, broad application will require validation and standardization of UE-specific KMA protocols in addition to decreased logistical and cost burdens.


Assuntos
Úmero , Extremidade Superior , Humanos , Extremidade Superior/cirurgia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Movimento (Física)
3.
Bioorg Med Chem ; 49: 116437, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600239

RESUMO

AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.


Assuntos
Descoberta de Drogas , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Indazóis/síntese química , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Receptor Tirosina Quinase Axl
4.
Proc Natl Acad Sci U S A ; 115(30): E7119-E7128, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29976840

RESUMO

Sal-like 4 (SALL4) is a nuclear factor central to the maintenance of stem cell pluripotency and is a key component in hepatocellular carcinoma, a malignancy with no effective treatment. In cancer cells, SALL4 associates with nucleosome remodeling deacetylase (NuRD) to silence tumor-suppressor genes, such as PTEN. Here, we determined the crystal structure of an amino-terminal peptide of SALL4(1-12) complexed to RBBp4, the chaperone subunit of NuRD, at 2.7 Å, and subsequent design of a potent therapeutic SALL4 peptide (FFW) capable of antagonizing the SALL4-NURD interaction using systematic truncation and amino acid substitution studies. FFW peptide disruption of the SALL4-NuRD complex resulted in unidirectional up-regulation of transcripts, turning SALL4 from a dual transcription repressor-activator mode to singular transcription activator mode. We demonstrate that FFW has a target affinity of 23 nM, and displays significant antitumor effects, inhibiting tumor growth by 85% in xenograft mouse models. Using transcriptome and survival analysis, we discovered that the peptide inhibits the transcription-repressor function of SALL4 and causes massive up-regulation of transcripts that are beneficial to patient survival. This study supports the SALL4-NuRD complex as a drug target and FFW as a viable drug candidate, showcasing an effective strategy to accurately target oncogenes previously considered undruggable.


Assuntos
Antineoplásicos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias , Neoplasias , Peptídeos , Fatores de Transcrição , Transcriptoma/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Estrutura Quaternária de Proteína , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Hand Surg Am ; 46(9): 778-788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158206

RESUMO

Adult brachial plexus injuries result in profound functional deficits, debilitating pain, substantial mental health implications, and extensive economic impacts. Their initial evaluation includes a detailed physical examination, electrodiagnostic studies, advanced imaging, and patient counseling. A team-based approach, led by a peripheral nerve surgeon and including hand therapists, electrodiagnosticians, mental health experts, and pain-management specialists, is used to provide optimal longitudinal care during the lengthy recovery process. The options for the surgical management of brachial plexus injuries include exploration, neurolysis, nerve grafting, nerve transfer, free functional muscle transfer, tendon transfer, arthrodesis, and amputation. When treated within 6 months, the outcomes are favorable for the restoration of essential shoulder and elbow function. Free functional muscle transfer is a powerful tool to address elbow flexion and rudimentary grasp in both primary and delayed settings. The restoration of hand function remains a challenge for patients with complete brachial plexus injury. The purpose of this review is to summarize foundational concepts in diagnosis and management, discuss current trends and controversial topics, and address areas for future investigation.


Assuntos
Neuropatias do Plexo Braquial , Plexo Braquial , Articulação do Cotovelo , Transferência de Nervo , Adulto , Plexo Braquial/cirurgia , Neuropatias do Plexo Braquial/cirurgia , Humanos , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Estudos Retrospectivos
6.
J Fish Biol ; 97(3): 895-907, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32754931

RESUMO

Clarias batrachus (walking catfish) is an invasive species in Florida, renowned for its air-breathing and terrestrial locomotor capabilities. However, it is unknown how this species orients in terrestrial environments. Furthermore, while anecdotal life history information is widespread for this species in its nonnative range, little of this information exists in the literature. The goals of this study were to identify sensory modalities that C. batrachus use to orient on land, and to describe the natural history of this species in its nonnative range. Fish (n = 150) were collected from around Ruskin, FL, and housed in a greenhouse, where experiments took place. Individual catfish were placed in the center of a terrestrial arena and were exposed to nine treatments: two controls, L-alanine, quinine, allyl isothiocynate, sucrose, volatile hydrogen sulphide, pond water and aluminium foil. These fish exhibited significantly positive chemotaxis toward alanine and pond water, and negative chemotaxis away from volatile hydrogen sulphide, suggesting chemoreception - both through direct contact and through the air - is important to their terrestrial orientation. Additionally, 88 people from Florida wildlife-related Facebook groups who have personal observations of C. batrachus on land were interviewed for information regarding their terrestrial natural history. These data were combined with observations from 38 YouTube videos. C. batrachus appear to emerge most frequently during or just after heavy summer rains, particularly from stormwater drains in urban areas, where they may feed on terrestrial invertebrates. By better understanding the full life history of C. batrachus, we can improve management of this species.


Assuntos
Peixes-Gato , Espécies Introduzidas , Resposta Táctica , Animais , Peixes-Gato/fisiologia , Florida , Água Doce , Tempo
7.
Biochem J ; 475(12): 2043-2055, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29760238

RESUMO

The oncoprotein YAP (Yes-associated protein) requires the TEAD family of transcription factors for the up-regulation of genes important for cell proliferation. Disrupting YAP-TEAD interaction is an attractive strategy for cancer therapy. Targeting TEADs using small molecules that either bind to the YAP-binding pocket or the palmitate-binding pocket is proposed to disrupt the YAP-TEAD interaction. There is a need for methodologies to facilitate robust and reliable identification of compounds that occupy either YAP-binding pocket or palmitate-binding pocket. Here, using NMR spectroscopy, we validated compounds that bind to these pockets and also identify the residues in mouse TEAD4 (mTEAD4) that interact with these compounds. Flufenamic acid (FA) was used as a positive control for validation of palmitate-binding pocket-occupying compounds by NMR. Furthermore, we identify a hit from a fragment screen and show that it occupies a site close to YAP-binding pocket on the TEAD surface. Our results also indicate that purified mTEAD4 can catalyze autopalmitoylation. NMR studies on mTEAD4 revealed that exchanges exist in TEAD as NMR signal broadening was observed for residues close to the palmitoylation site. Mutating the palmitoylated cysteine (C360S mutant) abolished palmitoylation, while no significant changes in the NMR spectrum were observed for the mutant which still binds to YAP. We also show that FA inhibits TEAD autopalmitoylation. Our studies highlight the utility of NMR spectroscopy in identifying small molecules that bind to TEAD pockets and reinforce the notion that both palmitate-binding pocket and YAP-binding pocket are targetable.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ligação a DNA/química , Proteínas Musculares/química , Fosfoproteínas/química , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácido Flufenâmico/química , Lipoilação , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Domínios Proteicos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
8.
Biochem J ; 474(6): 971-982, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28126738

RESUMO

We have previously characterised the histone lysine methyltransferase properties of PRDM9, a member of the PRDM family of putative transcriptional regulators. PRDM9 displays broad substrate recognition and methylates a range of histone substrates, including octamers, core histone proteins, and peptides. In the present study, we show that PRDM9 performs intramolecular automethylation on multiple lysine residues localised to a lysine-rich region on the post-SET (suppressor of variegation 3-9, enhancer of zeste and trithorax) domain. PRDM9 automethylation is abolished by a single active-site mutation, C321P, also known to disrupt interactions with S-adenosylmethionine. We have taken an initial step towards tool compound generation through rational design of a substrate-mimic, peptidic inhibitor of PRDM9 automethylation. The discovery of automethylation in PRDM9 adds a new dimension to our understanding of PRDM9 enzymology.


Assuntos
Cisteína/química , Histona-Lisina N-Metiltransferase/química , Prolina/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Cinética , Ligantes , Metilação , Camundongos , Modelos Moleculares , Mutação , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Biol Chem ; 291(34): 17743-53, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27365392

RESUMO

Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of ß1-α2 and residues in the loop of ß3-ß4 might improve the inhibitor potency.


Assuntos
DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Inibidores da Topoisomerase/química , Humanos , Indóis/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
10.
J Pept Sci ; 23(3): 215-221, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28105725

RESUMO

Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole-resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane-disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head-to-head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole-resistant C. albicans. The 11-residue peptide, P11-6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time-kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antifúngicos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Ágar , Sequência de Aminoácidos , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/isolamento & purificação , Candidíase Vulvovaginal/microbiologia , Feminino , Fluconazol/farmacologia , Humanos , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade
11.
J Enzyme Inhib Med Chem ; 31(sup2): 194-200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27241372

RESUMO

The mosquito-borne West Nile virus (WNV) causes a wide range of symptoms ranging from fever to the often fatal viral encephalitis. To date, no vaccine or drug therapy is available. The trypsin-like WNV NS2B-NS3 protease is deemed a plausible drug target and was shown to be inhibited by bovine pancreatic trypsin inhibitor (BPTI), a 58-residue protein isolated from bovine lung. Herein, we report a protein truncation study that resulted in a novel 14-residue cyclic peptide with equipotent inhibitory activity to native BPTI. We believe our truncation strategy can be further applied in the development of peptide-based inhibitors targeting trypsin-like proteases.


Assuntos
Inibidores de Proteases/farmacologia , Inibidores da Tripsina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Animais , Bovinos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Tripsina/metabolismo , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/química , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/efeitos dos fármacos
12.
J Enzyme Inhib Med Chem ; 31(2): 332-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25792507

RESUMO

Enterovirus 71 (EV71) is a highly infectious pathogen primarily responsible for Hand, Foot, and Mouth Disease, particularly among children. Currently, no approved antiviral drug has been developed against this disease. The EV71 3C protease is deemed an attractive drug target due to its crucial role in viral polyprotein processing. Rupintrivir, a peptide-based inhibitor originally developed to target the human rhinovirus 3C protease, was found to inhibit the EV71 3C protease. In this communication, we report the inhibitory activities of 30 Rupintrivir analogs against the EV71 3C protease. The most potent inhibitor, containing a P2 ring-constrained phenylalanine analog (compound 9), was found to be two-fold more potent than Rupintrivir (IC50 value 3.4 ± 0.4 versus 7.3 ± 0.8 µM). Our findings suggest that employing geometrically constrained residues in peptide-based protease inhibitors can potentially enhance their inhibitory activities.


Assuntos
Enterovirus Humano A/enzimologia , Peptidomiméticos/farmacologia , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Antivirais/química , Antivirais/farmacologia , Técnicas de Química Sintética , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Concentração Inibidora 50 , Isoxazóis/química , Isoxazóis/farmacologia , Peptidomiméticos/síntese química , Peptidomiméticos/química , Fenilalanina/análogos & derivados , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Valina/análogos & derivados , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(25): E2298-307, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23737503

RESUMO

Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated ß-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on ß-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates ß-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased ß-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of ß-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, ß-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK-eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia.


Assuntos
Crise Blástica/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Compostos de Anilina/farmacologia , Animais , Crise Blástica/tratamento farmacológico , Crise Blástica/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/farmacologia , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
14.
Biophys J ; 109(9): 1969-77, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26536273

RESUMO

Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a G(+) strain (Streptococcus pneumoniae (sParE)) and a G(-) strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four regions in ParE that are important for inhibitor binding, namely, α2, the loop between ß2 and α3, and the ß2 and ß6 strands. Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in α2 of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better understanding of the development of broad-spectrum antibacterial agents.


Assuntos
DNA Topoisomerase IV/química , Sequência de Aminoácidos , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Pseudomonas aeruginosa , Soluções , Streptococcus pneumoniae , Ressonância de Plasmônio de Superfície , Temperatura
15.
Biochemistry ; 54(1): 32-46, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25431995

RESUMO

Mitogen-activated protein kinases-interacting kinase 1 and 2 (Mnk1/2) activate the oncogene eukaryotic initiation factor 4E (eIF4E) by phosphorylation. High level of phosphorylated eIF4E is associated with various types of cancers. Inhibition of Mnk prevents eIF4E phosphorylation, making them potential therapeutic targets for cancer. Recently, we have designed and synthesized a series of novel imidazopyridine and imidazopyrazine derivatives that inhibit Mnk1/2 kinases with a potency in the nanomolar to micromolar range. In the current work we model the inhibition of Mnk kinase activity by these inhibitors using various computational approaches. Combining homology modeling, docking, molecular dynamics simulations, and free energy calculations, we find that all compounds bind similarly to the active sites of both kinases with their imidazopyridine and imidazopyrazine cores anchored to the hinge regions of the kinases through hydrogen bonds. In addition, hydrogen bond interactions between the inhibitors and the catalytic Lys78 (Mnk1), Lys113 (Mnk2) and Ser131 (Mnk1), Ser166 (Mnk2) appear to be important for the potency and stability of the bound conformations of the inhibitors. The computed binding free energies (ΔGPred) of these inhibitors are in accord with experimental bioactivity data (pIC50) with correlation coefficients (r(2)) of 0.70 and 0.68 for Mnk1 and Mnk2 respectively. van der Waals energies and entropic effects appear to dominate the binding free energy (ΔGPred) for each Mnk-inhibitor complex studied. The models suggest that the activities of these small molecule inhibitors arise from interactions with multiple residues in the active sites, particularly with the hydrophobic residues.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Estrutura Secundária de Proteína
16.
Biochem Biophys Res Commun ; 467(4): 961-6, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26471301

RESUMO

Bacterial topoisomerase IV (ParE) is essential for DNA replication and serves as an attractive target for antibacterial drug development. The X-ray structure of the N-terminal 24 kDa ParE, responsible for ATP binding has been solved. Due to the accessibility of structural information of ParE, many potent ParE inhibitors have been discovered. In this study, a pyridylurea lead molecule against ParE of Escherichia coli (eParE) was characterized with a series of biochemical and biophysical techniques. More importantly, solution NMR analysis of compound binding to eParE provides better understanding of the molecular interactions between the inhibitor and eParE.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/farmacologia , Escherichia coli/enzimologia , Trifosfato de Adenosina/antagonistas & inibidores , Sequência de Aminoácidos , Antibacterianos/farmacologia , Ligação Competitiva , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Desenho de Fármacos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
17.
New Phytol ; 205(2): 907-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306861

RESUMO

Quantitative trait locus (QTL) mapping is a first step toward understanding the genetic basis of adaptive evolution and may also reveal reproductive incompatibilities unique to hybrids. In plants, the shift from outcrossing to self-pollination is common, providing the opportunity for comparisons of QTL architecture among parallel evolutionary transitions. We used QTL mapping in hybrids between the bee-pollinated monkeyflower Mimulus lewisii and the closely related selfer Mimulus parishii to determine the genetic basis of divergence in floral traits and flowering time associated with mating-system evolution, and to characterize hybrid anther sterility. We found a moderately polygenic and highly directional basis for floral size evolution, suggesting adaptation from standing variation or in pursuit of a moving optimum, whereas only a few major loci accounted for substantial flowering-time divergence. Cytonuclear incompatibilities caused hybrid anther sterility, confounding estimation of reproductive organ QTLs. The genetic architecture of floral traits associated with selfing in M. parishii was primarily polygenic, as in other QTL studies of this transition, but in contrast to the previously characterized oligogenic basis of a pollinator shift in close relatives. Hybrid anther sterility appeared parallel at the molecular level to previously characterized incompatibilities, but also raised new questions about cytonuclear co-evolution in plants.


Assuntos
Flores/genética , Mimulus/genética , Polinização/genética , Locos de Características Quantitativas , Evolução Biológica , Quimera , Mapeamento Cromossômico
18.
Biochem J ; 461(2): 323-34, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24785241

RESUMO

PRDM proteins have emerged as important regulators of disease and developmental processes. To gain insight into the mechanistic actions of the PRDM family, we have performed comprehensive characterization of a prototype member protein, the histone methyltransferase PRDM9, using biochemical, biophysical and chemical biology techniques. In the present paper we report the first known molecular characterization of a PRDM9-methylated recombinant histone octamer and the identification of new histone substrates for the enzyme. A single C321P mutant of the PR/SET domain was demonstrated to significantly weaken PRDM9 activity. Additionally, we have optimized a robust biochemical assay amenable to high-throughput screening to facilitate the generation of small-molecule chemical probes for this protein family. The present study has provided valuable insight into the enzymology of an intrinsically active PRDM protein.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Ensaios de Triagem em Larga Escala , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Humanos , Cinética , Medições Luminescentes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Prolina/química , Prolina/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xenopus laevis
19.
J Biol Chem ; 288(18): 12891-900, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23511634

RESUMO

The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.


Assuntos
Vírus da Dengue/enzimologia , Complexos Multienzimáticos/química , Proteínas não Estruturais Virais/química , Cristalografia por Raios X , Vírus da Dengue/genética , Humanos , Espectroscopia de Ressonância Magnética , Complexos Multienzimáticos/genética , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , RNA Helicases/química , RNA Helicases/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética
20.
Clin Proteomics ; 11(1): 40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469110

RESUMO

BACKGROUND: Placental syncytiotrophoblast microvesicles (STBM) are shed into the maternal circulation during normal pregnancy. STBM circulate in significantly increased amounts in preeclampsia (PE) and are considered to be among contributors to the exaggerated proinflammatory, procoagulant state of PE. However, protein composition of STBM in normal pregnancy and PE remains unknown. We therefore sought to determine the protein components of STBM and whether STBM protein expressions differ in preeclamptic and normal pregnancies. Patients with PE (n = 3) and normal pregnant controls (n = 6) were recruited. STBM were prepared from placental explant culture supernatant. STBM proteins were analyzed by a combination of 1D Gel-LC-MS/MS. Protein expressions levels were quantified using spectral counts and validated by immunohistochemistry. RESULTS: Over 400 proteins were identified in the STBM samples. Among these, 25 proteins were found to be differentially expressed in preeclampsia compared to healthy pregnant controls, including integrins, annexins and histones. CONCLUSION: STBM proteins include those that are implicated in immune response, coagulation, oxidative stress, apoptosis as well as lipid metabolism pathways. Differential protein expressions of STBM suggest their pathophysiological relevance in PE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA