Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neoplasia ; 20(11): 1161-1174, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30317122

RESUMO

Obese women diagnosed with breast cancer have an increased risk for metastasis, and the underlying mechanisms are not well established. Within the mammary gland, adipose-derived stromal cells (ASCs) are heterogeneous cells with the capacity to differentiate into multiple mesenchymal lineages. To study the effects of obesity on ASCs, mice were fed a control diet (CD) or high-fat diet (HFD) to induce obesity, and ASCs were isolated from the mammary glands of lean and obese mice. We observed that obesity increased ASCs proliferation, decreased differentiation potential, and upregulated expression of α-smooth muscle actin, a marker of activated fibroblasts, compared to ASCs from lean mice. To determine how ASCs from obese mice impacted tumor growth, we mixed ASCs isolated from CD- or HFD-fed mice with mammary tumor cells and injected them into the mammary glands of lean mice. Tumor cells mixed with ASCs from obese mice grew significantly larger tumors and had increased invasion into surrounding adipose tissue than tumor cells mixed with control ASCs. ASCs from obese mice demonstrated enhanced tumor cell invasion in culture, a phenotype associated with increased expression of insulin-like growth factor-1 (IGF-1) and abrogated by IGF-1 neutralizing antibodies. Weight loss induced in obese mice significantly decreased expression of IGF-1 from ASCs and reduced the ability of the ASCs to induce an invasive phenotype. Together, these results suggest that obesity enhances local invasion of breast cancer cells through increased expression of IGF-1 by mammary ASCs, and weight loss may reverse this tumor-promoting phenotype.


Assuntos
Tecido Adiposo/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Biomarcadores , Neoplasias da Mama/etiologia , Linhagem Celular Tumoral , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/biossíntese , Camundongos , Obesidade/metabolismo , Fenótipo
2.
Elife ; 52016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146892

RESUMO

The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure-one of the oldest cis-regulatory features discovered in animal genomes-explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Drosophila , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA