Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Luminescence ; 39(9): e4884, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39258707

RESUMO

In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.


Assuntos
Dissulfetos , Química Verde , Molibdênio , Oryza , Tamanho da Partícula , Molibdênio/química , Dissulfetos/química , Oryza/química , Ferro/química , Propriedades de Superfície
2.
Luminescence ; 39(8): e4844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103209

RESUMO

This study presents a novel approach for the fabrication of a Co,Ni/MoS2-derived nanohybrid material using wheat straw extract. The facile synthesis method involves a sol-gel process, followed by calcination, showcasing the potential of agricultural waste as a sustainable reducing and chelating reagent. The as-prepared nanohybrid has been characterized using different techniques to analyse its physicochemical properties. X-ray diffraction analysis confirmed the successful synthesis of the nanohybrid material, identifying the presence of NiMoO4, CoSO4 and Mo17O47 as its components. Fourier-transform infrared spectroscopy differentiated the functional groups present in the wheat straw biomass and those in the nanohybrid material, highlighting the formation of metal-oxide and sulphide bonds. Scanning electron microscopy revealed a heterogeneous morphology with agglomerated structures and a grain size of around 70 nm in the nanohybrid. Energy-dispersive X-ray spectroscopy analysis shows the composition of elements with weight percentages of (Mo) 9.17%, (S) 6.21%, (Co) 12.48%, (Ni) 12.18% and (O) 50.46% contributing to its composition. Electrochemical analysis performed through cyclic voltammetry showcased the exceptional performance of the nanohybrid material as compared with MoS2, suggesting its possible applications for designing biosensors and related technologies. Thus, the research study presented herein underscores the efficient utilization of natural resources for the development of functional nanomaterials with promising applications in various fields. This study paves a way for manufacturing innovation along with advancement of novel synthesis method for sustainable nanomaterial for future technological developments.


Assuntos
Cobalto , Dissulfetos , Molibdênio , Níquel , Triticum , Triticum/química , Molibdênio/química , Dissulfetos/química , Níquel/química , Cobalto/química , Extratos Vegetais/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA