Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824190

RESUMO

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Assuntos
Linhagem , Complexo Shelterina , Telomerase , Proteínas de Ligação a Telômeros , Telômero , Humanos , Telômero/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Complexo Shelterina/metabolismo , Telomerase/genética , Telomerase/metabolismo , Masculino , Feminino , Homeostase do Telômero/genética , Sequência de Bases , Adulto
2.
Aging Cell ; 22(10): e13941, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688329

RESUMO

Mitochondria play essential roles in metabolic support and signaling within all cells. Congenital and acquired defects in mitochondria are responsible for several pathologies, including premature entrance to cellar senescence. Conversely, we examined the consequences of dysfunctional telomere-driven cellular senescence on mitochondrial biogenesis and function. We drove senescence in vitro and in vivo by deleting the telomere-binding protein TRF2 in fibroblasts and hepatocytes, respectively. Deletion of TRF2 led to a robust DNA damage response, global changes in transcription, and induction of cellular senescence. In vitro, senescent cells had significant increases in mitochondrial respiratory capacity driven by increased cellular and mitochondrial volume. Hepatocytes with dysfunctional telomeres maintained their mitochondrial respiratory capacity in vivo, whether measured in intact cells or purified mitochondria. Induction of senescence led to the upregulation of overlapping and distinct genes in fibroblasts and hepatocytes, but transcripts related to mitochondria were preserved. Our results support that mitochondrial function and activity are preserved in telomere dysfunction-induced senescence, which may facilitate continued cellular functions.


Assuntos
Proteínas de Ligação a Telômeros , Telômero , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo
3.
Science ; 378(6620): 664-668, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356143

RESUMO

Overcoming replicative senescence is an essential step during oncogenesis, and the reactivation of TERT through promoter mutations is a common mechanism. TERT promoter mutations are acquired in about 75% of melanomas but are not sufficient to maintain telomeres, suggesting that additional mutations are required. We identified a cluster of variants in the promoter of ACD encoding the shelterin component TPP1. ACD promoter variants are present in about 5% of cutaneous melanoma and co-occur with TERT promoter mutations. The two most common somatic variants create or modify binding sites for E-twenty-six (ETS) transcription factors, similar to mutations in the TERT promoter. The variants increase the expression of TPP1 and function together with TERT to synergistically lengthen telomeres. Our findings suggest that TPP1 promoter variants collaborate with TERT activation to enhance telomere maintenance and immortalization in melanoma.


Assuntos
Melanoma , Regiões Promotoras Genéticas , Complexo Shelterina , Neoplasias Cutâneas , Telomerase , Homeostase do Telômero , Proteínas de Ligação a Telômeros , Humanos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Mutação , Regiões Promotoras Genéticas/genética , Complexo Shelterina/genética , Neoplasias Cutâneas/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Ativação Transcricional
4.
Front Med (Lausanne) ; 8: 600626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634147

RESUMO

Cellular senescence due to telomere dysfunction has been hypothesized to play a role in age-associated diseases including idiopathic pulmonary fibrosis (IPF). It has been postulated that paracrine mediators originating from senescent alveolar epithelia signal to surrounding mesenchymal cells and contribute to disease pathogenesis. However, murine models of telomere-induced alveolar epithelial senescence fail to display the canonical senescence-associated secretory phenotype (SASP) that is observed in senescent human cells. In an effort to understand human-specific responses to telomere dysfunction, we modeled telomere dysfunction-induced senescence in a human alveolar epithelial cell line. We hypothesized that this system would enable us to probe for differences in transcriptional and proteomic senescence pathways in vitro and to identify novel secreted protein (secretome) changes that potentially contribute to the pathogenesis of IPF. Following induction of telomere dysfunction, a robust senescence phenotype was observed. RNA-seq analysis of the senescent cells revealed the SASP and comparisons to previous murine data highlighted differences in response to telomere dysfunction. We conducted a proteomic analysis of the senescent cells using a novel biotin ligase capable of labeling secreted proteins. Candidate biomarkers selected from our transcriptional and secretome data were then evaluated in IPF and control patient plasma. Four novel proteins were found to be differentially expressed between the patient groups: stanniocalcin-1, contactin-1, tenascin C, and total inhibin. Our data show that human telomere-induced, alveolar epithelial senescence results in a transcriptional SASP that is distinct from that seen in analogous murine cells. Our findings suggest that studies in animal models should be carefully validated given the possibility of species-specific responses to telomere dysfunction. We also describe a pragmatic approach for the study of the consequences of telomere-induced alveolar epithelial cell senescence in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA