Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Genome Ed ; 3: 663380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713258

RESUMO

Advances in the use of RNA-guided Cas9-based genome editing in plants have been rapid over the last few years. A desirable application of genome editing is gene targeting (GT), as it allows a wide range of precise modifications; however, this remains inefficient especially in key crop species. Here, we describe successful, heritable gene targeting in barley at the target site of Cas9 using an in-planta strategy but fail to achieve the same using a wheat dwarf virus replicon to increase the copy number of the repair template. Without the replicon, we were able to delete 150 bp of the coding sequence of our target gene whilst simultaneously fusing in-frame mCherry in its place. Starting from 14 original transgenic plants, two plants appeared to have the required gene targeting event. From one of these T0 plants, three independent gene targeting events were identified, two of which were heritable. When the replicon was included, 39 T0 plants were produced and shown to have high copy numbers of the repair template. However, none of the 17 lines screened in T1 gave rise to significant or heritable gene targeting events despite screening twice the number of plants in T1 compared with the non-replicon strategy. Investigation indicated that high copy numbers of repair template created by the replicon approach cause false-positive PCR results which are indistinguishable at the sequence level to true GT events in junction PCR screens widely used in GT studies. In the successful non-replicon approach, heritable gene targeting events were obtained in T1, and subsequently, the T-DNA was found to be linked to the targeted locus. Thus, physical proximity of target and donor sites may be a factor in successful gene targeting.

2.
Methods Mol Biol ; 1900: 115-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460562

RESUMO

Barley transformation is an essential tool for a range of functional genomics studies as well as for future crop improvement. The demand for efficient crop transformation systems continues to grow, with new genome editing technologies adding to that demand. Here we describe an efficient and routine transformation protocol for the spring barley Golden Promise, based on Agrobacterium-mediated inoculation of immature embryos. This protocol has been widely used for overexpression and RNAi applications and more recently for CRISPR/Cas9 mediated genome editing. Average transformation efficiencies of 25% can be easily achieved.


Assuntos
Agrobacterium tumefaciens/metabolismo , Técnicas Genéticas , Hordeum/embriologia , Hordeum/genética , Transformação Genética , Meios de Cultura , Raízes de Plantas/fisiologia , Regeneração , Sementes/embriologia , Solo , Esterilização
4.
Plant Methods ; 15: 121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673278

RESUMO

BACKGROUND: Despite wheat being a worldwide staple, it is still considered the most difficult to transform out of the main cereal crops. Therefore, for the wheat research community, a freely available and effective wheat transformation system is still greatly needed. RESULTS: We have developed and optimised a reproducible Agrobacterium-mediated transformation system for the spring wheat cv 'Fielder' that yields transformation efficiencies of up to 25%. We report on some of the important factors that influence transformation efficiencies. In particular, these include donor plant health, stage of the donor material, pre-treatment by centrifugation, vector type and selection cassette. Transgene copy number data for independent plants regenerated from the same original immature embryo suggests that multiple transgenic events arise from single immature embryos, therefore, actual efficiencies might be even higher than those reported. CONCLUSION: We reported here a high-throughput, highly efficient and repeatable transformation system for wheat and this system has been used successfully to introduce genes of interest, for RNAi, over-expression and for CRISPR-Cas9 based genome editing.

5.
Nat Plants ; 4(1): 23-29, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292376

RESUMO

The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.


Assuntos
Brassica napus/genética , Cicer/genética , Hordeum/genética , Pisum sativum/genética , Triticum/genética , Produtos Agrícolas , Fenótipo , Melhoramento Vegetal , Pesquisa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA