Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuropsychiatry Clin Neurosci ; 30(3): 242-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29366375

RESUMO

Four transcranial magnetic stimulation (TMS) devices are currently approved for use in treatment-resistant depression. The authors present the first data-driven study examining the patient- and technician-experience using three of these distinct devices. A retrospective survey design with both patient and technician arms was utilized. The study population included patients who received TMS for treatment-resistant depression at the Berenson Allen Center for Noninvasive Brain Stimulation for the first time between 2013 and 2016 and technicians who worked in the program from 2009 to 2017. Statistical analysis included t tests and analyses of variance to assess differences between and across the multiple groups, respectively. Patients treated with the NeuroStar device reported greater confidence that the treatment was being performed correctly compared with those treated with the Magstim device. Conversely, with regard to tolerability, patients treated with the Magstim device reported less pain in the last week and less pain on average compared with those treated with the NeuroStar device. On average, technicians reported feeling that both the Magstim and NeuroStar devices were significantly easier to use than the Brainsway Deep TMS H-Coil device. Additionally, they found the former two devices to be more reliable and better tolerated. Furthermore, the technicians reported greater confidence in the Magstim and NeuroStar devices compared with the Brainsway Deep TMS H-Coil device and indicated that they would be more likely to recommend the two former devices to other treatment centers.


Assuntos
Atitude do Pessoal de Saúde , Transtorno Depressivo Resistente a Tratamento/psicologia , Transtorno Depressivo Resistente a Tratamento/terapia , Estimulação Magnética Transcraniana/psicologia , Análise de Variância , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Estudos Retrospectivos , Estimulação Magnética Transcraniana/instrumentação , Cooperação e Adesão ao Tratamento
2.
J Affect Disord ; 303: 114-122, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35139416

RESUMO

BACKGROUND: Many patients with treatment-resistant depression (TRD) respond to repetitive transcranial magnetic stimulation (rTMS) treatment. This study aimed to investigate whether modulation of corticomotor excitability by rTMS predicts response to rTMS treatment for TRD in 10 Hz and intermittent theta-burst stimulation (iTBS) protocols. METHODS: Thirteen TRD patients underwent two evaluations of corticomotor plasticity-assessed as the post-rTMS (10 Hz, iTBS) percent change (%∆) in motor evoked potential (MEP) amplitude elicited by single-pulse TMS. Following corticomotor plasticity evaluations, patients subsequently underwent a standard 6-week course of 10 Hz rTMS (4 s train, 26 s inter-train interval, 3000 total pulses, 120% of motor threshold) to the left dorsolateral prefrontal cortex. Treatment efficacy was assessed by the Beck Depression Inventory II (BDI-II) and Hamilton Depression Rating Scale (HAM-D). The change in MEPs was compared between 10 Hz and iTBS conditions and related to the change in BDI-II and HAM-D scores. RESULTS: Analyses of variance revealed that across all time-points, higher post-10 Hz MEP change was a significant predictor of greater improvement on the BDI-II (p < 0.001) and HAM-D (p = 0.022). This relationship was not observed with iTBS (p-values≥0.100). Post-hoc tests revealed the MEP change 20 min post-10 Hz was the strongest predictor of BDI-II improvement. LIMITATIONS: Cortical excitability was measured from the motor cortex, rather than the dorsolateral prefrontal cortex, where treatment is applied. The 10 Hz and iTBS protocols were performed at different intensities consistent with common practice. CONCLUSIONS: Modulation of corticomotor excitability by 10 Hz can predict response to rTMS treatment with 10 Hz rTMS.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Córtex Motor , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/terapia , Potencial Evocado Motor/fisiologia , Humanos , Estimulação Magnética Transcraniana/métodos
3.
Front Rehabil Sci ; 3: 923141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189006

RESUMO

Background: With our aging population, many individuals are at risk of developing age-related cognitive decline. Physical exercise has been demonstrated to enhance cognitive performance in aging adults. This study examined the effects of 8 weeks of aerobic exercise on cognitive performance and cardiorespiratory fitness in sedentary aging adults at risk for cognitive decline. Methods: Fifty-two participants (age 62.9 ± 6.8, 76.9% female) engaged in eight weeks of moderate-to high-intensity exercise (19 in-person, 33 remotely). Global cognition was measured by the Repeatable Battery for the Assessment of Neuropsychological Status, the Delis-Kaplan Executive Function System, and the Digit Span subtest of the Wechsler Adult Intelligence Scale (WAIS) Fourth Edition. Cardiorespiratory fitness was measured via heart rate recovery at minute 1 (HRR1) and 2 (HRR2), and exercise engagement (defined as percent of total exercise time spent in the prescribed heart rate zone). We measured pre and post changes using paired t-tests and mixed effects models, and investigated the association between cardiorespiratory and cognitive performance using multiple regression models. Cohen's d were calculated to estimate effect sizes. Results: Overall, 63.4 % of participants demonstrated high engagement (≥ 70% total exercise time spent in the prescribed heart rate zone). There were significant pre-post improvements in verbal fluency and verbal memory, and a significant decrement in working memory, but these were associated with small effect sizes (Cohen's d <0.5). Concerning cardiorespiratory fitness, there was a pre-to-post significant improvement in HRR1 (p = 0.01, d = 0.30) and HRR2 (p < 0.001, d = 0.50). Multiple regressions revealed significant associations between cardiorespiratory and cognitive performance, but all were associated with small effect sizes (Cohen's d < 0.5). Interestingly, there were significant between-group differences in exercise engagement (all p < 0.001), with remote participants demonstrating greater exercise engagement than in-person participants. Conclusion: Improvements in cognition and cardiorespiratory fitness were observed after 8 weeks of moderate to high-intensity exercise in aging adults. These results suggest that committing to a regular exercise regimen, even for a brief two-month period, can promote improvements in both cardiorespiratory fitness and cognitive performance, and that improvements are driven by exercise engagement.

4.
JMIR Res Protoc ; 10(11): e33589, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34817393

RESUMO

BACKGROUND: Extensive evidence supports a link between aerobic exercise and cognitive improvements in aging adults. A major limitation with existing research is the high variability in cognitive response to exercise. Our incomplete understanding of the mechanisms that influence this variability and the low adherence to exercise are critical knowledge gaps and major barriers for the systematic implementation of exercise for promoting cognitive health in aging. OBJECTIVE: We aimed to provide an in-person and remotely delivered intervention study protocol with the main goal of informing the knowledge gap on the mechanistic action of exercise on the brain by characterizing important mechanisms of neuroplasticity, cardiorespiratory fitness response, and genetics proposed to underlie cognitive response to exercise. METHODS: This is an open-label, 2-month, interventional study protocol in neurologically healthy sedentary adults. This study was delivered fully in-person and in remote options. Participants underwent a total of 30 sessions, including the screening session, 3 pretest (baseline) assessments, 24 moderate-to-vigorous aerobic exercise sessions, and 3 posttest assessments. We recruited participants aged 55 years and above, sedentary, and cognitively healthy. Primary outcomes were neuroplasticity, cognitive function, and cardiorespiratory fitness. Secondary outcomes included genetic factors, endothelium function, functional mobility and postural control, exercise questionnaires, depression, and sleep. We also explored study feasibility, exercise adherence, technology adaptability, and compliance of both in-person and remote protocols. RESULTS: The recruitment phase and data collection of this study have concluded. Results are expected to be published by the end of 2021 or in early 2022. CONCLUSIONS: The data generated in these studies will introduce tangible parameters to guide the development of personalized exercise prescription models for maximal cognitive benefit in aging adults. Successful completion of the specific aims will enable researchers to acquire the appropriate expertise to design and conduct studies by testing personalized exercise interventions in person and remotely delivered, likely to be more effective at promoting cognitive health in aging adults. TRIAL REGISTRATION: ClinicalTrials.gov NCT03804528; http://clinicaltrials.gov/ct2/show/NCT03804528. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/33589.

5.
Restor Neurol Neurosci ; 35(5): 547-556, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28984621

RESUMO

BACKGROUND: Exercise-mediated cognitive improvements can be at least partly attributed to neuroplastic changes in the nervous system, and may be influenced by the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene. Transcranial magnetic stimulation (TMS) can be used to assess mechanisms of plasticity in humans noninvasively. OBJECTIVES: To assess the feasibility of evaluating the effects of short-term regular exercise on cognitive performance, and to evaluate the relationship between these effects, TMS measures of plasticity, and BDNF Met carrier status in young healthy sedentary adults. METHODS: Of the 19 participants who enrolled in the study, 14 sedentary adults (12 females, age mean±SD, 27±12.3 yr), with less than two sessions of physical exercise in the preceding 2 months, completed an aerobic exercise regimen including four 30-min daily sessions per week for 4 weeks (for a total of 16 sessions) delivered at 55-64% of age-predicted maximal heart rate. Prior to and following the exercise regimen, participants performed a neuropsychological test battery and an intermittent theta-burst TMS plasticity protocol. RESULTS: All participants completed the various measures and adhered to the exercise regimen. There were no complications and the results obtained were reliable. The feasibility of the approach is thus well established. Between-group comparisons of pre-post change revealed trends toward increased performance on the Stroop and faster reaction times in the CPT detectability in the Val66Val subgroup (p = 0.07 and p = 0.08), and a reduction in TBS-induced modulation of TMS responses in Met carriers (p = 0.07). CONCLUSION: Acute exercise interventions in sedentary adults can be meaningfully conducted along with cognitive and neurophysiologic measures to assess behavioral and neurobiological effects and assessment of BDNF polymorphism. TMS measures of plasticity can be used to evaluate the effects of exercise on brain plasticity, and relate them to neuropsychological measures of cognition.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Plasticidade Neuronal/fisiologia , Proteínas de Fase Aguda , Adulto , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Viabilidade , Feminino , Técnicas de Genotipagem , Heterozigoto , Humanos , Masculino , Testes Neuropsicológicos , Projetos Piloto , Polimorfismo Genético , Comportamento Sedentário , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA