Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378122

RESUMO

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/genética , Caenorhabditis elegans/genética , Tauopatias/genética , Doença de Alzheimer/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica
2.
Neuropathology ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39391989

RESUMO

Hereditary spastic paraplegia (HSP) with thin corpus callosum can be due to a variety of genetic causes, the most common of which are biallelic variants in SPG11 (HSP11). Only six cases of neuropathologic examination of HSP11 have been reported. Here we present neuropathological findings in another case of HSP11 with novel mutation (homozygous c.6439_6442del) and clinical features of three additional cases of HSP11. These four cases of HSP11 had similar disease courses with prominent lower extremity weakness and spasticity but varied cognitive symptoms and brain magnetic resonance imaging (MRI) findings. Neuropathological examination of one case included ex vivo MRI of the cerebrum, histologic and immunohistochemical evaluation, and Western blot for SPG11. The case was notable for a small cerebrum with decreased volume of cortex, white matter, and deep gray nuclei. The corpus callosum was thin, and the substantia nigra showed marked pallor. Microscopically, the cortex had normal lamination and mild loss of neurons with mild gliosis, the corpus callosum was thin with limited gliosis, and the substantia nigra had marked decrease in neurons and pigment, with minimal gliosis. In contrast, the basal ganglia, thalamus, and spinal cord (anterior horns, corticospinal, and spinocerebellar tracts) had prominent neuron loss and gliosis. Myelin-laden macrophages were found in multiple sites but were most common in the corpus callosum. No hyperphosphorylated tau or TDP-43 aggregates, Lewy bodies, or amyloid ß plaques were found. Compared to control, SPG11 was absent in HSP11 brain and markers of autophagy were elevated by Western blot. Comparison with prior reports of HSP with thin corpus callosum and HSP11 demonstrates a disease with a broad range of structural changes of the brain, including features of abnormal development and degeneration.

3.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35178571

RESUMO

Although amyloid ß (Aß) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aß, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aß, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aß neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Ligação a Poli(A) , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA