Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7938): 88-91, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450909

RESUMO

The relatively stable Holocene climate was preceded by a pronounced event of abrupt warming in the Northern Hemisphere, the termination of the Younger Dryas (YD) cold period1,2. Although this transition has been intensively studied, its imprint on low-latitude ocean temperature is still controversial and its effects on sub-annual to decadal climate variability remain poorly understood1,3,4. Sea surface temperature (SST) variability at these timescales in the tropical Atlantic is expected to intensify under current and future global warming and has considerable consequences for environmental conditions in Africa and South America, and for tropical Pacific climate5-8. Here we present a 100-µm-resolution record obtained by mass spectrometry imaging (MSI) of long-chain alkenones in sediments from the Cariaco Basin9-11 and find that annually averaged SST remained stable during the transition into the Holocene. However, seasonality increased more than twofold and approached modern values of 1.6 °C, probably driven by the position and/or annual range of the Intertropical Convergence Zone (ITCZ). We further observe that interannual variability intensified during the early Holocene. Our results demonstrate that sub-decadal-scale SST variability in the tropical Atlantic is sensitive to abrupt changes in climate background, such as those witnessed during the most recent glacial to interglacial transition.

2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782456

RESUMO

A mechanistic understanding of formation pathways of low-molecular-weight hydrocarbons is relevant for disciplines such as atmospheric chemistry, geology, and astrobiology. The patterns of stable carbon isotopic compositions (δ13C) of hydrocarbons are commonly used to distinguish biological, thermogenic, and abiotic sources. Here, we report unusual isotope patterns of nonmethane hydrocarbons in hydrothermally heated sediments of the Guaymas Basin; these nonmethane hydrocarbons are notably 13C-enriched relative to sedimentary organic matter and display an isotope pattern that is reversed relative to thermogenic hydrocarbons (i.e., δ13C ethane > δ13C propane > δ13C n-butane > δ13C n-pentane). We hypothesized that this pattern results from abiotic reductive conversion of volatile fatty acids, which were isotopically enriched due to prior equilibration of their carboxyl carbon with dissolved inorganic carbon. This hypothesis was tested by hydrous pyrolysis experiments with isotopically labeled substrates at 350 °C and 400 bar that demonstrated 1) the exchange of carboxyl carbon of C2 to C5 volatile fatty acids with 13C-bicarbonate and 2) the incorporation of 13C from 13C-2-acetic acid into ethane and propane. Collectively, our results reveal an abiotic formation pathway for nonmethane hydrocarbons, which may be sufficiently active in organic-rich, geothermally heated sediments and petroleum systems to affect isotopic compositions of nonmethane hydrocarbons.

3.
Proc Natl Acad Sci U S A ; 117(44): 27587-27597, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077589

RESUMO

Microbial life in marine sediment contributes substantially to global biomass and is a crucial component of the Earth system. Subseafloor sediment includes both aerobic and anaerobic microbial ecosystems, which persist on very low fluxes of bioavailable energy over geologic time. However, the taxonomic diversity of the marine sedimentary microbial biome and the spatial distribution of that diversity have been poorly constrained on a global scale. We investigated 299 globally distributed sediment core samples from 40 different sites at depths of 0.1 to 678 m below the seafloor. We obtained ∼47 million 16S ribosomal RNA (rRNA) gene sequences using consistent clean subsampling and experimental procedures, which enabled accurate and unbiased comparison of all samples. Statistical analysis reveals significant correlations between taxonomic composition, sedimentary organic carbon concentration, and presence or absence of dissolved oxygen. Extrapolation with two fitted species-area relationship models indicates taxonomic richness in marine sediment to be 7.85 × 103 to 6.10 × 105 and 3.28 × 104 to 2.46 × 106 amplicon sequence variants for Archaea and Bacteria, respectively. This richness is comparable to the richness in topsoil and the richness in seawater, indicating that Bacteria are more diverse than Archaea in Earth's global biosphere.


Assuntos
Archaea/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Microbiota/genética , Água do Mar/microbiologia , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biomassa , DNA Arqueal/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
4.
Proc Natl Acad Sci U S A ; 117(12): 6599-6607, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32170018

RESUMO

Marine microalgae sequester as much CO2 into carbohydrates as terrestrial plants. Polymeric carbohydrates (i.e., glycans) provide carbon for heterotrophic organisms and constitute a carbon sink in the global oceans. The quantitative contributions of different algal glycans to cycling and sequestration of carbon remain unknown, partly because of the analytical challenge to quantify glycans in complex biological matrices. Here, we quantified a glycan structural type using a recently developed biocatalytic strategy, which involves laminarinase enzymes that specifically cleave the algal glycan laminarin into readily analyzable fragments. We measured laminarin along transects in the Arctic, Atlantic, and Pacific oceans and during three time series in the North Sea. These data revealed a median of 26 ± 17% laminarin within the particulate organic carbon pool. The observed correlation between chlorophyll and laminarin suggests an annual production of algal laminarin of 12 ± 8 gigatons: that is, approximately three times the annual atmospheric carbon dioxide increase by fossil fuel burning. Moreover, our data revealed that laminarin accounted for up to 50% of organic carbon in sinking diatom-containing particles, thus substantially contributing to carbon export from surface waters. Spatially and temporally variable laminarin concentrations in the sunlit ocean are driven by light availability. Collectively, these observations highlight the prominent ecological role and biogeochemical function of laminarin in oceanic carbon export and energy flow to higher trophic levels.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/análise , Clorofila/análise , Diatomáceas/química , Glucanos/análise , Oceanos e Mares , Água do Mar
5.
Appl Environ Microbiol ; 88(4): e0215421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936840

RESUMO

Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs and PDGTs, respectively) are recently identified classes of archaeal membrane lipids that are prominent constituents in anoxic subseafloor sediments. These lipids are intriguing, as they possess unusual backbones with four or five carbon atoms instead of the canonical three-carbon glycerol backbone. In this study, we examined the biosynthesis of BDGTs and PDGTs by the methanogen Methanomassiliicoccus luminyensis, the only available isolate known to produce these compounds, via stable isotope labeling with [methyl-13C]methionine followed by mass spectrometry analysis. We show that their biosynthesis proceeds from transfer(s) of the terminal methyl group of methionine to the more common archaeal membrane lipids, i.e., glycerol dibiphytanyl glycerol tetraethers (GDGTs). As this methylation targets a methylene group, a radical mechanism involving a radical S-adenosylmethionine (SAM) enzyme is probable. Over the course of the incubation, the abundance of PDGTs relative to BDGTs, expressed as backbone methylation index, increased, implying that backbone methylation may be related to the growth shift to stationary conditions, possibly due to limited energy and/or substrate availability. The increase of the backbone methylation index with increasing sediment age in a sample set from the Mediterranean Sea adds support for such a relationship. IMPORTANCE Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers are membrane lipids recently discovered in anoxic environments. These lipids differ from typical membrane-spanning tetraether lipids because they possess a non-glycerol backbone. The biosynthetic pathway and physiological role of these unique lipids are currently unknown. Here, we show that in the strain Methanomassiliicoccus luminyensis, these lipids are the result of methyl transfer(s) from an S-adenosyl methionine (SAM) intermediate. We observed a relative increase of the doubly methylated compound, pentanetriol dibiphytanyl glycerol tetraether, in the stationary phase of M. luminyensis as well as in the subseafloor of the Mediterranean Sea and thus introduced a backbone methylation index, which could be used to further explore microbial activity in natural settings.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Glicerol/metabolismo , Lipídeos de Membrana/metabolismo , Metilação
6.
Nature ; 534(7606): 254-8, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279223

RESUMO

Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism, as shown here for Arcobacter and Breviatea.


Assuntos
Arcobacter/fisiologia , Eucariotos/fisiologia , Hidrogênio/metabolismo , Simbiose , Arcobacter/genética , Eucariotos/enzimologia , Eucariotos/genética , Aptidão Genética , Hidrogenase/genética , Hidrogenase/metabolismo , NADP/metabolismo , Proteômica , Simbiose/genética , Transcriptoma , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(23): 6022-6027, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29773709

RESUMO

Members of the archaeal phylum Bathyarchaeota are among the most abundant microorganisms on Earth. Although versatile metabolic capabilities such as acetogenesis, methanogenesis, and fermentation have been suggested for bathyarchaeotal members, no direct confirmation of these metabolic functions has been achieved through growth of Bathyarchaeota in the laboratory. Here we demonstrate, on the basis of gene-copy numbers and probing of archaeal lipids, the growth of Bathyarchaeota subgroup Bathy-8 in enrichments of estuarine sediments with the biopolymer lignin. Other organic substrates (casein, oleic acid, cellulose, and phenol) did not significantly stimulate growth of Bathyarchaeota Meanwhile, putative bathyarchaeotal tetraether lipids incorporated 13C from 13C-bicarbonate only when added in concert with lignin. Our results are consistent with organoautotrophic growth of a bathyarchaeotal group with lignin as an energy source and bicarbonate as a carbon source and shed light into the cycling of one of Earth's most abundant biopolymers in anoxic marine sediment.


Assuntos
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Lignina/metabolismo , Archaea/metabolismo , Carbono/metabolismo , Crescimento Quimioautotrófico/fisiologia , DNA Arqueal/metabolismo , Fontes Geradoras de Energia , Lignina/química , Metano/metabolismo , RNA Ribossômico 16S/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(28): 7762-7, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357675

RESUMO

Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Éteres de Glicerila/metabolismo , Metabolismo dos Lipídeos , Paleontologia/métodos , Técnicas de Cultura , Metabolismo Energético , Oceanos e Mares , Oxirredução , Temperatura
9.
Mol Microbiol ; 103(2): 242-252, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27741568

RESUMO

In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Lipídeos de Membrana/metabolismo , Methylococcaceae/citologia
10.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29523543

RESUMO

The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here, we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate the occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below the sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition.IMPORTANCE Microorganisms play crucial roles in global biogeochemical cycles, yet we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes, including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy, and anoxygenic photosynthesis in defined geochemical zones.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Quinonas/metabolismo , Água do Mar/microbiologia , Terpenos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Mar Negro , Ecossistema , Sedimentos Geológicos/química , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese , Filogenia , Água do Mar/química , Enxofre/metabolismo
11.
Environ Microbiol ; 19(2): 803-818, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28028923

RESUMO

Although subseafloor sediments are known to harbour a vast number of microbial cells, the distribution, diversity, and origins of fungal populations remain largely unexplored. In this study, we cultivated fungi from 34 of 47 deep coal-associated sediment samples collected at depths ranging from 1289 to 2457 m below the seafloor (mbsf) off the Shimokita Peninsula, Japan (1118 m water depth). We obtained a total of 69 fungal isolates under strict contamination controls, representing 61 Ascomycota (14 genera, 23 species) and 8 Basidiomycota (4 genera, 4 species). Penicillium and Aspergillus relatives were the most dominant genera within the Ascomycetes, followed by the members of genera Cladosporium, Hamigera, Chaetomium, Eutypella, Acremonium, Aureobasidium, Candida, Eurotium, Exophiala, Nigrospora, Bionectria and Pseudocercosporella. Four Basidiomycota species were identified as genera Schizophyllum, Irpex, Bjerkandera and Termitomyces. Among these isolates, Cladosporium sphaerospermum and Aspergillus sydowii relatives were isolated from a thin lignite coal-sandstone formation at 2457 mbsf. Our results indicate that these cultivable fungal populations are indigenous, originating from past terrigenous environments, which have persisted, possibly as spores, through ∼20 million years of depositional history.


Assuntos
Carvão Mineral/microbiologia , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Japão , Oceanos e Mares , Filogenia
12.
Environ Microbiol ; 19(7): 2681-2700, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28419726

RESUMO

Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar and consist of membrane-spanning, glycerol dibiphytanyl glycerol tetraethers with monoglycosyl, diglycosyl, phosphohexose and hexose-phosphohexose headgroups. However, the relative abundances of these IPLs and their core lipid compositions differ systematically between the phylogenetic subgroups, indicating high potential for chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 118 different lipids suggests that membrane lipid composition and adaptation mechanisms in Thaumarchaeota are more complex than previously thought and include unique lipids with as yet unresolved properties.


Assuntos
Archaea/metabolismo , Éteres de Glicerila/análise , Lipídeos de Membrana/análise , Archaea/classificação , Archaea/genética , Biomarcadores/análise , Ecossistema , Sedimentos Geológicos/microbiologia , Filogenia , Microbiologia do Solo , Microbiologia da Água
13.
Proc Natl Acad Sci U S A ; 111(44): 15669-74, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331871

RESUMO

Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. This concept is the basis of numerous molecular proxies used for paleoenvironmental reconstruction. Archaeal tetraether lipids from ubiquitous marine planktonic archaea are particularly abundant, well preserved in the sedimentary record and used in several molecular proxies. We here introduce the direct, extraction-free analysis of these compounds in intact sediment core sections using laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LDI FTICR-MS can detect the target lipids in single submillimeter-sized spots on sediment sections, equivalent to a sample mass in the nanogram range, and could thus pave the way for biomarker-based reconstruction of past environments and ecosystems at subannual to decadal resolution. We demonstrate that ratios of selected archaeal tetraethers acquired by LDI FTICR-MS are highly correlated with values obtained by conventional liquid chromatography/MS protocols. The ratio of the major archaeal lipids, caldarchaeol and crenarchaeol, analyzed in a 6.2-cm intact section of Mediterranean sapropel S1 at 250-µm resolution (∼ 4-y temporal resolution), provides an unprecedented view of the fine-scale patchiness of sedimentary biomarker distributions and the processes involved in proxy signal formation. Temporal variations of this lipid ratio indicate a strong influence of the ∼ 200-y de Vries solar cycle on reconstructed sea surface temperatures with possible amplitudes of several degrees, and suggest signal amplification by a complex interplay of ecological and environmental factors. Laser-based biomarker analysis of geological samples has the potential to revolutionize molecular stratigraphic studies of paleoenvironments.


Assuntos
Organismos Aquáticos/química , Archaea/química , Sedimentos Geológicos/química , Lipídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
Environ Microbiol ; 18(2): 692-707, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26472620

RESUMO

The distribution of respiratory quinone electron carriers among cultivated organisms provides clues on both the taxonomy of their producers and the redox processes these are mediating. Our study of the quinone inventories of 25 archaeal species belonging to the phyla Eury-, Cren- and Thaumarchaeota facilitates their use as chemotaxonomic markers for ecologically important archaeal clades. Saturated and monounsaturated menaquinones with six isoprenoid units forming the alkyl chain may serve as chemotaxonomic markers for Thaumarchaeota. Other diagnostic biomarkers are thiophene-bearing quinones for Sulfolobales and methanophenazines as functional quinone analogues of the Methanosarcinales. The ubiquity of saturated menaquinones in the Archaea in comparison to Bacteria suggests that these compounds may represent an ancestral and diagnostic feature of the Archaea. Overlap between quinone compositions of distinct thermophilic and halophilic archaea and bacteria may indicate lateral gene transfer. The biomarker potential of thaumarchaeal quinones was exemplarily demonstrated on a water column profile of the Black Sea. Both, thaumarchaeal quinones and membrane lipids showed similar distributions with maxima at the chemocline. Quinone distributions indicate that Thaumarchaeota dominate respiratory activity at a narrow interval in the chemocline, while they contribute only 9% to the microbial biomass at this depth, as determined by membrane lipid analysis.


Assuntos
Archaea/classificação , Archaea/metabolismo , Quinonas/química , Terpenos/química , Archaea/genética , Bactérias/metabolismo , Biomarcadores/metabolismo , Biomassa , Mar Negro , Ecologia , Transferência Genética Horizontal , Lipídeos de Membrana/metabolismo , Oxirredução , Filogenia
15.
Environ Microbiol ; 18(2): 656-67, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26415900

RESUMO

Heterotrophic Proteobacteria and Actinobacteria were isolated from Lake Matano, Indonesia, a stratified, ferruginous (iron-rich), ultra-oligotrophic lake with phosphate concentrations below 50 nM. Here, we describe the growth of eight strains of heterotrophic bacteria on a variety of soluble and insoluble sources of phosphorus. When transferred to medium without added phosphorus (P), the isolates grow slowly, their RNA content falls to as low as 1% of cellular dry weight, and 86-100% of the membrane lipids are replaced with amino- or glycolipids. Similar changes in lipid composition have been observed in marine photoautotrophs and soil heterotrophs, and similar flexibility in phosphorus sources has been demonstrated in marine and soil-dwelling heterotrophs. Our results demonstrate that heterotrophs isolated from this unusual environment alter their macromolecular composition, which allows the organisms to grow efficiently even in their extremely phosphorus-limited environment.


Assuntos
Actinobacteria/metabolismo , Processos Heterotróficos/fisiologia , Fosfatos/metabolismo , Fósforo/metabolismo , Proteobactérias/metabolismo , Actinobacteria/isolamento & purificação , Glicolipídeos/metabolismo , Lagos/microbiologia , Lipídeos de Membrana/metabolismo , Proteobactérias/isolamento & purificação , Água/análise
16.
Environ Microbiol ; 18(4): 1200-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26626228

RESUMO

Investigations of the biogeochemical roles of benthic Archaea in marine sediments are hampered by the scarcity of cultured representatives. In order to determine their metabolic capacity, we reconstructed the genomic content of four widespread uncultured benthic Archaea recovered from estuary sediments at 48% to 95% completeness. Four genomic bins were found to belong to different subgroups of the former Miscellaneous Crenarcheota Group (MCG) now called Bathyarchaeota: MCG-6, MCG-1, MCG-7/17 and MCG-15. Metabolic predictions based on gene content of the different genome bins indicate that subgroup 6 has the ability to hydrolyse extracellular plant-derived carbohydrates, and that all four subgroups can degrade detrital proteins. Genes encoding enzymes involved in acetate production as well as in the reductive acetyl-CoA pathway were detected in all four genomes inferring that these Archaea are organo-heterotrophic and autotrophic acetogens. Genes involved in nitrite reduction were detected in all Bathyarchaeota subgroups and indicate a potential for dissimilatory nitrite reduction to ammonium. Comparing the genome content of the different Bathyarchaeota subgroups indicated preferences for distinct types of carbohydrate substrates and implicitly, for different niches within the sedimentary environment.


Assuntos
Archaea , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Acetilcoenzima A/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Carboidratos , DNA Arqueal/genética , Estuários , Genômica , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Microbiologia da Água
17.
Environ Microbiol ; 18(12): 4324-4336, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26950522

RESUMO

Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota.


Assuntos
Archaea/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Plâncton/metabolismo , Água do Mar/microbiologia , Adaptação Fisiológica , Archaea/classificação , Archaea/isolamento & purificação , Membrana Celular/química , Membrana Celular/metabolismo , Ecologia , Lipídeos/química , Lipídeos de Membrana/química , Oceanos e Mares , Oxigênio/metabolismo , Plâncton/classificação , Plâncton/isolamento & purificação , Água do Mar/química
18.
Archaea ; 2016: 5938289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274708

RESUMO

The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.


Assuntos
Proteínas Arqueais/análise , Lipídeos/análise , Proteoma/análise , Thermococcus/química , Escherichia coli , Redes e Vias Metabólicas
19.
Appl Environ Microbiol ; 82(15): 4505-4516, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208108

RESUMO

UNLABELLED: A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE: Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea.


Assuntos
Butanos/metabolismo , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Metabolismo dos Lipídeos , Metanol/metabolismo , Água do Mar/microbiologia , Euryarchaeota/classificação , Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Lipídeos/química , Filogenia
20.
Int J Syst Evol Microbiol ; 66(1): 332-340, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518885

RESUMO

Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 µm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0-1.2 and 37-40 °C, with the optimal substrates for growth being beef extract (3 g l- 1) for strain S5T and beef extract with tryptone (3 and 1 g l- 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5T and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3 mol% in strain S5T and 37.16 mol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order Thermoplasmatales, with 73.9-86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined in silico was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, Cuniculiplasmataceae fam. nov., genus Cuniculiplasma gen. nov. and species Cuniculiplasma divulgatum sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5T and PM4 ( = JCM 30641 = VKM B-2940). The type strain of Cuniculiplasma divulgatum is S5T ( = JCM 30642T = VKM B-2941T).


Assuntos
Filogenia , Thermoplasmales/classificação , Microbiologia da Água , Composição de Bases , Parede Celular/química , DNA Arqueal/genética , Lipídeos/química , Mineração , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Thermoplasmales/genética , Thermoplasmales/isolamento & purificação , Reino Unido , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA