Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cureus ; 16(2): e54203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371431

RESUMO

Purpose This study aimed to compare the image quality between echo planar imaging (EPI) with compressed sensing-sensitivity encoding (EPICS)-based diffusion-weighted imaging (DWI) and conventional parallel imaging (PI)-based DWI of the head and neck. Materials and methods Ten healthy volunteers participated in this study. EPICS-DWI was acquired based on an axial spin-echo EPI sequence with EPICS acceleration factors of 2, 3, and 4, respectively. Conventional PI-DWI was acquired using the same acceleration factors (i.e., 2, 3, and 4). Quantitative assessment was performed by measuring the signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) in a circular region of interest (ROI) on the parotid and submandibular glands. For qualitative evaluation, a three-point visual grading system was used to assess the (1) overall image quality and (2) degree of image distortion. Results In the quantitative assessment, the SNR of the parotid gland in EPICS-DWI was significantly higher than that of PI-DWI in acceleration factors of 3 and 4 (p<0.05). In a comparison of ADC values, significant differences were not observed between EPICS-DWI and PI-DWI. In the qualitative assessment, the overall image quality of EPICS-DWI was significantly higher than that of PI-DWI for acceleration factors 3 and 4 (p<0.05). The degree of image distortion was significantly larger in EPICS-DWI with an acceleration factor of 2 than that of 3 or 4 (p<0.01, respectively). Conclusion Under the appropriate parameter setting, EPICS-DWI demonstrated higher SNR and better overall image quality for head and neck imaging than PI-DWI, without increasing image distortion.

3.
Colloids Surf B Biointerfaces ; 153: 104-110, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28231498

RESUMO

Chemotherapy is the most reliable treatment for osteoporosis and osseous metastases. To facilitate better drug delivery for bone treatments, a novel preparation of polymeric nanoparticles with high affinity to bone has been prepared. Two-step synthesis of cholesteryl-functionalized poly(ethylene sodium phosphate) (Ch-PEPn·Na) was performed via ring-opening polymerization of cyclic phosphoesters and the demethylation. The molecular weight of Ch-PEPn·Na could be well controlled by changing the ratio of cholesterol and cyclic phosphoesters. Because Ch-PEPn·Na exhibits an amphiphilic nature in aqueous media, Ch-PEPn·Na-bearing nanoparticles (PEPn·Na NPs) were prepared by a solvent evaporation technique. The size of the nanoparticles investigated in the current study is approximately 100nm, which was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to the presence of highly water-soluble polymer chains, dispersion of PEPn·Na NPs in aqueous media was stable for at least 1 week. Hemolytic activity of PEPn·Na NPs was found to be low and PEPn·Na NPs did not disintegrate mammalian cell membranes. Additionally, cytotoxicity of PEPn·Na NPs was not observed at concentrations below 100µg/mL. The adsorption of PEPn·Na NPs on hydroxyapatite (HAp) microparticles was studied in comparison with poly(ethylene glycol) nanoparticles (PEG NPs). Both PEPn·Na NPs and PEG NPs adsorbed well onto HAp microparticles in distilled water with binding equilibrium constants (KHAp) for PEPn·Na NPs and PEG NPs of 3.6×106 and 7.9×106, respectively. In contrast, only PEPn·Na NPs adsorbed onto HAp microparticles in a saline phosphate buffer. Moreover, the adsorption of PEPn·Na NPs onto HAp microparticles occurred even in the presence of 1.2mM calcium ions or low-pH media. The affinity of the nanoparticles to bovine bone slices was also studied, with the result that large quantities of adsorbed PEPn·Na NPs were observed on the slices by scanning electron microscope.


Assuntos
Materiais Biocompatíveis/metabolismo , Reabsorção Óssea/metabolismo , Nanopartículas/metabolismo , Polietilenos/metabolismo , Adsorção , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Bovinos , Linhagem Celular , Sobrevivência Celular , Teste de Materiais , Camundongos , Nanopartículas/química , Osteoclastos , Tamanho da Partícula , Polietilenos/síntese química , Polietilenos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA