Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(4): 288-304, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424481

RESUMO

Membraneless organelles (MLOs) are detected in cells as dots of mesoscopic size. By undergoing phase separation into a liquid-like or gel-like phase, MLOs contribute to intracellular compartmentalization of specific biological functions. In eukaryotes, dozens of MLOs have been identified, including the nucleolus, Cajal bodies, nuclear speckles, paraspeckles, promyelocytic leukaemia protein (PML) nuclear bodies, nuclear stress bodies, processing bodies (P bodies) and stress granules. MLOs contain specific proteins, of which many possess intrinsically disordered regions (IDRs), and nucleic acids, mainly RNA. Many MLOs contribute to gene regulation by different mechanisms. Through sequestration of specific factors, MLOs promote biochemical reactions by simultaneously concentrating substrates and enzymes, and/or suppressing the activity of the sequestered factors elsewhere in the cell. Other MLOs construct inter-chromosomal hubs by associating with multiple loci, thereby contributing to the biogenesis of macromolecular machineries essential for gene expression, such as ribosomes and spliceosomes. The organization of many MLOs includes layers, which might have different biophysical properties and functions. MLOs are functionally interconnected and are involved in various diseases, prompting the emergence of therapeutics targeting them. In this Review, we introduce MLOs that are relevant to gene regulation and discuss their assembly, internal structure, gene-regulatory roles in transcription, RNA processing and translation, particularly in stress conditions, and their disease relevance.


Assuntos
Condensados Biomoleculares , Organelas , Organelas/metabolismo , RNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo
2.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36596869

RESUMO

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genética
3.
Mol Cell ; 83(24): 4479-4493.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096826

RESUMO

4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.


Assuntos
Splicing de RNA , Pequeno RNA não Traduzido , Camundongos , Animais , Splicing de RNA/genética , Éxons/genética , Retroelementos/genética , Códon sem Sentido , Processamento Alternativo
4.
EMBO J ; 42(18): e114331, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526230

RESUMO

Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.


Assuntos
RNA Longo não Codificante , RNA Satélite , Humanos , RNA Satélite/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , DNA Satélite/genética , Heterocromatina , Centrômero/metabolismo
5.
Mol Cell ; 74(5): 951-965.e13, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31047794

RESUMO

RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Murinas/metabolismo , RNA Longo não Codificante/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Poliadenilação/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(9): e2312587121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381785

RESUMO

To ensure a robust immune response to pathogens without risking immunopathology, the kinetics and amplitude of inflammatory gene expression in macrophages need to be exquisitely well controlled. There is a growing appreciation for stress-responsive membraneless organelles (MLOs) regulating various steps of eukaryotic gene expression in response to extrinsic cues. Here, we implicate the nuclear paraspeckle, a highly ordered biomolecular condensate that nucleates on the Neat1 lncRNA, in tuning innate immune gene expression in murine macrophages. In response to a variety of innate agonists, macrophage paraspeckles rapidly aggregate (0.5 h poststimulation) and disaggregate (2 h poststimulation). Paraspeckle maintenance and aggregation require active transcription and MAPK signaling, whereas paraspeckle disaggregation requires degradation of Neat1 via the nuclear RNA exosome. In response to lipopolysaccharide treatment, Neat1 KO macrophages fail to properly express a large cohort of proinflammatory cytokines, chemokines, and antimicrobial mediators. Consequently, Neat1 KO macrophages cannot control replication of Salmonella enterica serovar Typhimurium or vesicular stomatitis virus. These findings highlight a prominent role for MLOs in orchestrating the macrophage response to pathogens and support a model whereby dynamic assembly and disassembly of paraspeckles reorganizes the nuclear landscape to enable inflammatory gene expression following innate stimuli.


Assuntos
Paraspeckles , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos/metabolismo
7.
RNA ; 30(8): 1011-1024, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38692841

RESUMO

Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.


Assuntos
Adipócitos Bege , Diferenciação Celular , Temperatura Baixa , Camundongos Knockout , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Diferenciação Celular/genética , Adipócitos Bege/metabolismo , Adipócitos Bege/citologia , Termogênese/genética
8.
Mol Cell ; 70(6): 1038-1053.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932899

RESUMO

A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit phase-separated properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to phase-separated aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of phase-separated paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation.


Assuntos
RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA , Fatores de Transcrição/metabolismo
9.
Nucleic Acids Res ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011894

RESUMO

RNA helicases are involved in RNA metabolism in an ATP-dependent manner. Although many RNA helicases unwind the RNA structure and/or remove proteins from the RNA, some can load their interacting proteins onto RNAs. Here, we developed an in vitro strategy to identify the ATP-dependent factors involved in spliceosomal uridine-rich small nuclear RNA (U snRNA) export. We identified the RNA helicase UAP56/DDX39B, a component of the mRNA export complex named the transcription-export (TREX) complex, and its closely related RNA helicase URH49/DDX39A as the factors that stimulated RNA binding of PHAX, an adapter protein for U snRNA export. ALYREF, another TREX component, acted as a bridge between PHAX and UAP56/DDX39B. We also showed that UAP56/DDX39B and ALYREF participate in U snRNA export through a mechanism distinct from that of mRNA export. This study describes a novel aspect of the TREX components for U snRNP biogenesis and highlights the loading activity of RNA helicases.

10.
EMBO J ; 40(12): e107270, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33885174

RESUMO

Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.


Assuntos
Micelas , Polímeros , RNA Longo não Codificante , Ribonucleoproteínas , Linhagem Celular , Humanos
11.
EMBO J ; 40(15): e107976, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34184765

RESUMO

Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress-inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature-dependent Ser/Arg-rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA-binding proteins revealed HSATIII association with proteins related to N6 -methyladenosine (m6 A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6 A-modified. nSBs sequester the m6 A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6 A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6 A modification of pre-mRNAs, leading to repression of m6 A-dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature-dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6 A-modified architectural lncRNAs.


Assuntos
Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Temperatura
12.
RNA ; 29(2): 170-177, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384963

RESUMO

The mammalian cell nucleus contains dozens of membrane-less nuclear bodies that play significant roles in various aspects of gene expression. Several nuclear bodies are nucleated by specific architectural noncoding RNAs (arcRNAs) acting as structural scaffolds. We have reported that a minor population of cellular RNAs exhibits an unusual semi-extractable feature upon using the conventional procedure of RNA preparation and that needle shearing or heating of cell lysates remarkably improves extraction of dozens of RNAs. Because semi-extractable RNAs, including known arcRNAs, commonly localize in nuclear bodies, this feature may be a hallmark of arcRNAs. Using the semi-extractability of RNA, we performed genome-wide screening of semi-extractable long noncoding RNAs to identify new candidate arcRNAs for arcRNA under hyperosmotic and heat stress conditions. After screening stress-inducible and semi-extractable RNAs, hundreds of readthrough downstream-of-gene (DoG) transcripts over several hundreds of kilobases, many of which were not detected among RNAs prepared by the conventional extraction procedure, were found to be stress-inducible and semi-extractable. We further characterized some of the abundant DoGs and found that stress-inducible transient extension of the 3'-UTR made DoGs semi-extractable. Furthermore, they were localized in distinct nuclear foci that were sensitive to 1,6-hexanediol. These data suggest that semi-extractable DoGs exhibit arcRNA-like features and our semi-extractable RNA-seq is a powerful tool to extensively monitor DoGs that are induced under specific physiological conditions.


Assuntos
Núcleo Celular , RNA Longo não Codificante , Animais , Sequência de Bases , Núcleo Celular/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mamíferos/genética
13.
Nucleic Acids Res ; 51(15): 7820-7831, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463833

RESUMO

Phase-separated membraneless organelles often contain RNAs that exhibit unusual semi-extractability using the conventional RNA extraction method, and can be efficiently retrieved by needle shearing or heating during RNA extraction. Semi-extractable RNAs are promising resources for understanding RNA-centric phase separation. However, limited assessments have been performed to systematically identify and characterize semi-extractable RNAs. In this study, 1074 semi-extractable RNAs, including ASAP1, DANT2, EXT1, FTX, IGF1R, LIMS1, NEAT1, PHF21A, PVT1, SCMH1, STRG.3024.1, TBL1X, TCF7L2, TVP23C-CDRT4, UBE2E2, ZCCHC7, ZFAND3 and ZSWIM6, which exhibited consistent semi-extractability were identified across five human cell lines. By integrating publicly available datasets, we found that semi-extractable RNAs tend to be distributed in the nuclear compartments but are dissociated from the chromatin. Long and repeat-containing semi-extractable RNAs act as hubs to provide global RNA-RNA interactions. Semi-extractable RNAs were divided into four groups based on their k-mer content. The NEAT1 group preferred to interact with paraspeckle proteins, such as FUS and NONO, implying that RNAs in this group are potential candidates of architectural RNAs that constitute nuclear bodies.


Assuntos
RNA Longo não Codificante , RNA , Humanos , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , RNA/isolamento & purificação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698299

RESUMO

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Assuntos
Transformação Celular Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Ductal Pancreático/fisiopatologia , Células Cultivadas , Reparo do DNA/genética , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos
15.
EMBO J ; 39(3): e102729, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782550

RESUMO

A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.


Assuntos
Núcleo Celular/metabolismo , Resposta ao Choque Térmico , Repetições de Microssatélites , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Células CHO , Cricetulus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Íntrons , Fosforilação , Fatores de Processamento de RNA/metabolismo , Sequenciamento do Exoma
16.
Genes Cells ; 28(8): 539-552, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37249032

RESUMO

A long-standing assumption in molecular biology posits that the conservation of protein and nucleic acid sequences emphasizes the functional significance of biomolecules. These conserved sequences fold into distinct secondary and tertiary structures, enable highly specific molecular interactions, and regulate complex yet organized molecular processes within living cells. However, recent evidence suggests that biomolecules can also function through primary sequence regions that lack conservation across species or gene families. These regions typically do not form rigid structures, and their inherent flexibility is critical for their functional roles. This review examines the emerging roles and molecular mechanisms of "nondomain biomolecules," whose functions are not easily predicted due to the absence of conserved functional domains. We propose the hypothesis that both domain- and nondomain-type molecules work together to enable flexible and efficient molecular processes within the highly crowded intracellular environment.


Assuntos
Proteínas , Proteínas/genética , Sequência Conservada , Biopolímeros
17.
Ann Surg ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870247

RESUMO

OBJECTIVE: This study aimed to evaluate the effect of continuing preoperative aspirin monotherapy on surgical outcomes in patients receiving antiplatelet therapy (APT). SUMMARY BACKGROUND DATA: The effectiveness of continuing preoperative aspirin monotherapy in patients undergoing APT in preventing thromboembolic consequences is mostly unknown. METHODS: This prospective multicenter cohort study on the Safety and Feasibility of Gastroenterological Surgery in Patients Undergoing Antithrombotic Therapy (GSATT study) conducted at 14 clinical centers enrolled and screened patients between October 2019 and December 2021. The participants (n=1,170) were assigned to the continued APT group, discontinued APT group, or non-APT group, and the surgical outcomes of each group were compared. Propensity score matching was performed between the continued and discontinued APT groups to investigate the effect of continuing preoperative aspirin therapy on thromboembolic complications. RESULTS: The rate of thromboembolic complications in the continued APT group was substantially lower than that in the non-APT or discontinued APT groups (0.5% vs. 2.6% vs. 2.9%; P=0.027). Multivariate investigation of the entire cohort revealed that discontinuation of APT (P<0.001) and chronic anticoagulant use (P<0.001) were independent risk factors for postoperative thromboembolism. The post-matching evaluation demonstrated that the rates of thromboembolic complications were significantly different between the continued and discontinued APT groups (0.6% vs. 3.3%; P=0.012). CONCLUSIONS: APT discontinuation following elective gastroenterological surgery increases the risk of thromboembolic consequences, whereas continuing preoperative aspirin greatly reduces this risk. The continuation of preoperative aspirin therapy in APT-received patients is considered one of the best alternatives for preventing thromboembolism during elective gastroenterological surgery.

18.
Genome Res ; 30(7): 1060-1072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32718982

RESUMO

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Assuntos
RNA Longo não Codificante/fisiologia , Processos de Crescimento Celular/genética , Movimento Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Canais de Potássio KCNQ/metabolismo , Anotação de Sequência Molecular , Oligonucleotídeos Antissenso , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno
19.
Mol Ther ; 30(7): 2618-2632, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331906

RESUMO

Sepsis-associated encephalopathy (SAE) is characterized by acute and diffuse brain dysfunction and correlates with long-term cognitive impairments with no targeted therapy. We used a mouse model of sepsis-related cognitive impairment to examine the role of lncRNA nuclear enriched abundant transcript 1 (Neat1) in SAE. We observed that Neat1 expression was increased in neuronal cells from septic mice and that it directly interacts with hemoglobin subunit beta (Hbb), preventing its degradation. The Neat1/Hbb axis suppressed postsynaptic density protein 95 (PSD-95) levels and decreased dendritic spine density. Neat1 knockout mice exhibited decreased Hbb levels, which resulted in increased PSD-95 levels, increased neuronal dendritic spine density, and decreased anxiety and memory impairment. Neat1 silencing via the antisense oligonucleotide GapmeR ameliorated anxiety-like behavior and cognitive impairment post-sepsis. In conclusion, we uncovered a previously unknown mechanism of the Neat1/Hbb axis in regulating neuronal dysfunction, which may lead to a novel treatment strategy for SAE.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Animais , Modelos Animais de Doenças , Subunidades de Hemoglobina , Camundongos , Camundongos Knockout , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sepse/complicações , Sepse/genética
20.
Trends Biochem Sci ; 43(2): 124-135, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29289458

RESUMO

Long noncoding RNA (lncRNA) molecules are some of the newest and least understood players in gene regulation. Hence, we need good model systems with well-defined RNA and protein components. One such system is paraspeckles - protein-rich nuclear organelles built around a specific lncRNA scaffold. New discoveries show how paraspeckles are formed through multiple RNA-protein and protein-protein interactions, some of which involve extensive polymerization, and others with multivalent interactions driving phase separation. Once formed, paraspeckles influence gene regulation through sequestration of component proteins and RNAs, with subsequent depletion in other compartments. Here we focus on the dual aspects of paraspeckle structure and function, revealing an emerging role for these dynamic bodies in a multitude of cellular settings.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Animais , Humanos , Transição de Fase , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA