Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochem Biophys Res Commun ; 718: 149981, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735134

RESUMO

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Assuntos
Endossomos , PTEN Fosfo-Hidrolase , Fosfatidilinositóis , Vacúolos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Humanos , Fosfatidilinositóis/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Morfolinas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compostos Heterocíclicos com 3 Anéis
2.
Bioorg Med Chem Lett ; 100: 129642, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310976

RESUMO

Since the outbreak of the pandemic, various anti-SARS-CoV-2 drugs have been developed. In particular, 3CL protease (3C-like protease, 3CLpro) is an attractive drug target because it is an essential enzyme for viral multiplication and is present only in viruses, not in humans. To date, 3CLpro inhibitors against SARS-CoV-2 such as nirmatrelvir and ensitrelvir have been launched as oral drugs in Japan, but there is still no potent drug against SARS-CoV-2, due to issues of in vivo absorption and stability. Recently, vitamin K3 was reported to show inhibitory activity against 3CLpro of SARS-CoV-2, and the mechanism of action was predicted to be the formation of a covalent bond between the thiol group of cysteine 145, the active center of 3CLpro, and the C-3 position of vitamin K3. Therefore, we synthesized derivatives in which the 2-methyl group of the vitamin K3 was systematically converted to other substituents and examined their inhibitory activity against 3CLpro of SARS-CoV-2. The results showed that the compounds with the sulfide structure showed an approximately 4-fold increase in activity over vitamin K3. These results indicated the possibility of creating new inhibitors based on vitamin K3 and its derivatives.


Assuntos
COVID-19 , Peptídeo Hidrolases , Humanos , SARS-CoV-2 , Endopeptidases , Vitamina K , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular
3.
Inorg Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258898

RESUMO

Prostate cancer is an androgen-dependent malignancy that presents a marked treatment challenge, particularly after progression to the castration-resistant stage. Traditional treatments such as androgen deprivation therapy often lead to resistance, necessitating novel therapeutic approaches. Previous studies have indicated that some of the azolato-bridged dinuclear platinum(II) complexes (general formula: [{cis-Pt(NH3)2}2(µ-OH)(µ-azolato)]X2, where azolato = pyrazolato, 1,2,3-triazolato, or tetrazolato and X = nitrate or perchlorate) inhibit androgen receptor (AR) signaling. Therefore, here we investigated the potential of 14 such complexes as agents for the treatment of prostate cancer by examining their antiproliferative activity in the human prostate adenocarcinoma cell line LNCaP. Several of the complexes, particularly 5-H-Y ([{cis-Pt(NH3)2}2(µ-OH)(µ-tetrazolato-N2,N3)](ClO4)2), effectively inhibited LNCaP cell growth, even at low concentrations, by direct modulation of AR signaling, and by binding to DNA and inducing apoptosis, which is a common mechanism of action of Pt-based drugs such as cisplatin (cis-diamminedichloridoplatinum(II)). Comparative analysis with cisplatin revealed superior inhibitory effects of these complexes. Further investigation revealed that 5-H-Y suppressed mRNA expression of genes downstream from AR and induced apoptosis, particularly in cells overexpressing AR, highlighting its potential as an AR antagonist. Thus, we provide here insights into the mechanisms underlying the antiproliferative effects of azolato-bridged complexes in prostate cancer.

4.
Biochem Biophys Res Commun ; 679: 116-121, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37683456

RESUMO

Increased phosphoinositide signaling is commonly associated with cancers. While "one-drug one-target" has been a major drug discovery strategy for cancer therapy, a "one-drug multi-targets" approach for phosphoinositide enzymes has the potential to offer a new therapeutic approach. In this study, we sought a new way to target phosphoinositides metabolism. Using a high-throughput phosphatidylinositol 5-phosphate 4-kinase-alpha (PI5P4Kα) assay, we have identified that the immunosuppressor KRP203/Mocravimod induces a significant perturbation in phosphoinositide metabolism in U87MG glioblastoma cells. Despite high sequence similarity of PI5P4K and PI4K isozymes, in vitro kinase assays showed that KRP203 activates some (e.g., PI5P4Kα, PI4KIIß) while inhibiting other phosphoinositide kinases (e.g., PI5P4Kß, γ, PI4KIIα, class I PI3K-p110α, δ, γ). Furthermore, KRP203 enhances PI3P5K/PIKFYVE's substrate selectivity for phosphatidylinositol (PI) while preserving its selectivity for PI(3)P. At cellular levels, 3 h of KRP203 treatment induces a prominent increase of PI(3)P and moderate increase of PI(5)P, PI(3,5)P2, and PI(3,4,5)P3 levels in U87MG cells. Collectively, the finding of multimodal activity of KRP203 towards multi-phosphoinositide kinases may open a novel basis to modulate cellular processes, potentially leading to more effective treatments for diseases associated with phosphoinositide signaling pathways.

5.
Bioorg Med Chem Lett ; 30(8): 127059, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32127260

RESUMO

We synthesized novel vitamin K derivatives by converting the naphthoquinone group to benzene derivatives and benzoquinone. We evaluated their neuronal differentiation activities to investigate the effect of the quinone moiety on this process. We observed that the 1,4-quinone as well as the side chain part play important roles in neuronal differentiation. We also performed QSAR analysis to predict the compounds which would have higher differentiation activity.


Assuntos
Derivados de Benzeno/farmacologia , Benzoquinonas/farmacologia , Naftoquinonas/farmacologia , Neurônios/efeitos dos fármacos , Vitamina K/farmacologia , Animais , Derivados de Benzeno/química , Benzoquinonas/química , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Naftoquinonas/química , Relação Quantitativa Estrutura-Atividade , Vitamina K/química
6.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226734

RESUMO

Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), derived from intestinal bacteria with an isoprene side chain; and vitamin K3 (menadione: MD), a synthetic product without a side chain. Vitamin K homologs have physiological effects, including in blood coagulation and in osteogenic activity via γ-glutamyl carboxylase and are used clinically. Recent studies have revealed that vitamin K homologs are converted to MK-4 by the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) in vivo and accumulate in all tissues. Although vitamin K is considered to have important physiological effects, its precise activities and mechanisms largely remain unclear. Recent research on vitamin K has suggested various new roles, such as transcriptional activity as an agonist of steroid and xenobiotic nuclear receptor and differentiation-inducing activity in neural stem cells. In this review, we describe synthetic ligands based on vitamin K and exhibit that the strength of biological activity can be controlled by modification of the side chain part.


Assuntos
Neurogênese/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Vitamina K/análogos & derivados , Vitamina K/farmacologia , Vitaminas/química , Vitaminas/farmacologia , Animais , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptor de Pregnano X/metabolismo
7.
Molecules ; 24(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614668

RESUMO

Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (-)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 µg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10-4 µg/mL and cytotoxicity was observed at concentrations greater than 10 µg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.


Assuntos
Proliferação de Células/efeitos dos fármacos , Flavonoides/química , Ligação Proteica , Soroalbumina Bovina/química , Animais , Antocianinas/química , Biflavonoides/química , Sítios de Ligação/efeitos dos fármacos , Catequina/química , Bovinos , Linhagem Celular , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Proantocianidinas/química , Ratos , Soroalbumina Bovina/farmacologia
8.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779181

RESUMO

We aimed to synthesize novel liver X receptor (LXR) agonists with potent agonist activity and subtype selectivity. Our synthetic scheme started with naphthoquinone derivatives, such as menadione and 2,3-dichloro-1,4-naphthoquinone. We introduced different substituents into the naphthoquinone structures, including aniline, piperidine, pyrrolidine, and morpholine, in one or two steps, and thus, we produced 14 target compounds. All 14 synthetic ligands were tested to determine whether they mediated LXR-mediated transcriptional activity. We investigated the transcriptional activity of each compound with two types of receptors, LXRα and LXRß. Among all 14 compounds, two showed weak LXRß-agonist activity, and two others exhibited potent LXRα-agonist activity. We also performed docking studies to obtain a better understanding of the modes of compound binding to LXR at the atomic level. In conclusion, we successfully synthesized naphthoquinone derivatives that act as LXRα/ß agonists and selective LXRα agonists.


Assuntos
Receptores X do Fígado/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Ligantes , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
9.
Biochem Biophys Res Commun ; 483(1): 359-365, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28025137

RESUMO

The active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25D3), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1-/- mice, deficient in CYP27B1, and VDR-deficient mice (Vdr-/-) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D3 and VDR, we produced Cyp27b1-/- mice and compared their phenotypes with those of Vdr-/- mice. Cyp27b1-/- mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr-/- mice. However, unlike Cyp27b1-/- mice, Vdr-/- mice developed alopecia. Cyp27b1-/- mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1-/- mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1-/- mice. These results suggested that 1α,25D3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1-/- mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D3. Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Calcitriol/análogos & derivados , Cartilagem/efeitos dos fármacos , Receptores de Calcitriol/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Alopecia/genética , Animais , Peso Corporal , Calcitriol/metabolismo , Cálcio/sangue , Cálcio/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Feminino , Fêmur/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteogênese , Osteoporose/metabolismo , Hormônio Paratireóideo/metabolismo , Fenótipo , Fósforo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo
10.
Bioorg Med Chem Lett ; 27(21): 4881-4884, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947152

RESUMO

Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control.


Assuntos
Vitamina K/análogos & derivados , Alquilação , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células PC12 , Ratos , Relação Estrutura-Atividade , Vitamina K/síntese química , Vitamina K/farmacologia
11.
Nature ; 468(7320): 117-21, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20953171

RESUMO

Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Menaquinone-4 (MK-4) is ubiquitously present in extrahepatic tissues, with particularly high concentrations in the brain, kidney and pancreas of humans and rats. It has consistently been shown that PK is endogenously converted to MK-4 (refs 4-8). This occurs either directly within certain tissues or by interconversion to menadione (K(3)), followed by prenylation to MK-4 (refs 9-12). No previous study has sought to identify the human enzyme responsible for MK-4 biosynthesis. Previously we provided evidence for the conversion of PK and K(3) into MK-4 in mouse cerebra. However, the molecular mechanisms for these conversion reactions are unclear. Here we identify a human MK-4 biosynthetic enzyme. We screened the human genome database for prenylation enzymes and found UbiA prenyltransferase containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. We found that short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d(7)) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d(7) in insect cells infected with UBIAD1 baculovirus. Converted MK-4-d(7) was chemically identified by (2)H-NMR analysis. MK-4 biosynthesis by UBIAD1 was not affected by the vitamin K antagonist warfarin. UBIAD1 was localized in endoplasmic reticulum and ubiquitously expressed in several tissues of mice. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme; this identification will permit more effective decisions to be made about vitamin K intake and bone health.


Assuntos
Proteínas/metabolismo , Vitamina K 2/análogos & derivados , Animais , Baculoviridae/genética , Baculoviridae/fisiologia , Osso e Ossos/metabolismo , Linhagem Celular , Dimetilaliltranstransferase , Humanos , Imageamento por Ressonância Magnética , Camundongos , Osteoblastos , Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Spodoptera/citologia , Spodoptera/virologia , Vitamina K/antagonistas & inibidores , Vitamina K/metabolismo , Vitamina K 1/metabolismo , Vitamina K 2/análise , Vitamina K 2/química , Vitamina K 2/metabolismo , Varfarina/farmacologia
12.
Biochem Biophys Res Commun ; 460(2): 238-44, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25772619

RESUMO

Vitamin K is involved in bone formation and blood coagulation. Natural vitamin K compounds are composed of the plant form phylloquinone (vitamin K1) and a series of bacterial menaquionones (MK-n; vitamin K2). Menadione (vitamin K3) is an artificial vitamin K compound. MK-4 contains 4-isoprenyl as a side group in the 2-methyl-1,4-naphthoquinone common structure and has various bioactivities. UbiA prenyltransferase domain containing 1 (UBIAD1 or TERE1) is the menaquinone-4 biosynthetic enzyme. UBIAD1 transcript expression significantly decreases in patients with prostate carcinoma and overexpressing UBIAD1 inhibits proliferation of a tumour cell line. UBIAD1 mRNA expression is ubiquitous in mouse tissues, and higher UBIAD1 mRNA expression levels are detected in the brain, heart, kidneys and pancreas. Several functions of UBIAD1 have been reported; however, regulation of the human UBIAD1 gene has not been elucidated. Here we report cloning and characterisation of the human UBIAD1 promoter. A 5' rapid amplification of cDNA ends analysis revealed that the main transcriptional start site was 306 nucleotides upstream of the translation initiation codon. Deletion and mutation analyses revealed the functional importance of the YY1 consensus motif. Electrophoretic gel mobility shift and chromatin immunoprecipitation assays demonstrated that YY1 binds the UBIAD1 promoter in vitro and in vivo. In addition, YY1 small interfering RNA decreased endogenous UBIAD1 mRNA expression and UBIAD1 conversion activity. These results suggest that YY1 up-regulates UBIAD1 expression and UBIAD1 conversion activity through the UBIAD1 promoter.


Assuntos
Dimetilaliltranstransferase/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Transcrição YY1/fisiologia , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , DNA Complementar , Dimetilaliltranstransferase/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
13.
J Biol Chem ; 288(46): 33071-80, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085302

RESUMO

Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and (1)H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.


Assuntos
Mucosa Intestinal/metabolismo , Vitamina K 1/farmacocinética , Vitamina K 2/análogos & derivados , Vitamina K 3/metabolismo , Vitaminas/farmacocinética , Animais , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Vitamina K 1/farmacologia , Vitamina K 2/metabolismo , Vitaminas/farmacologia
14.
Hum Mutat ; 34(2): 317-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169578

RESUMO

Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by germline variants in UBIAD1 introducing missense alterations leading to deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. UBIAD1 was recently shown to synthesize menaquinone-4 (MK-4, vitamin K(2) ), but causal mechanisms of SCD are unknown. We report a novel c.864G>A UBIAD1 mutation altering glycine 177 to glutamic acid (p.G177E) in six SCD families, including four families from Finland who share a likely founder mutation. We observed reduced MK-4 synthesis by UBIAD1 altered by SCD mutations p.N102S, p.G177R/E, and p.D112N, and molecular models showed p.G177-mutant UBIAD1 disrupted transmembrane helices and active site residues. We show UBIAD1 interacts with HMGCR and SOAT1, enzymes catalyzing cholesterol synthesis and storage, respectively, using yeast two-hybrid screening and immunoprecipitation. Docking simulations indicate cholesterol binds to UBIAD1 in the substrate-binding cleft and substrate-binding overlaps with GGPP binding, an MK-4 substrate, suggesting potential competition between these metabolites. Impaired MK-4 synthesis is a biochemical defect identified in SCD suggesting UBIAD1 links vitamin K and cholesterol metabolism through physical contact between enzymes and metabolites. Our data suggest a role for endogenous MK-4 in maintaining cornea health and visual acuity.


Assuntos
Colesterol/metabolismo , Distrofias Hereditárias da Córnea/genética , Dimetilaliltranstransferase/genética , Vitamina K 2/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Córnea/enzimologia , Dimetilaliltranstransferase/metabolismo , Feminino , Finlândia , Variação Genética , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Imunoprecipitação , Japão , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica , Análise de Sequência de DNA , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Turquia , Vitamina K 2/metabolismo
15.
Yakugaku Zasshi ; 143(3): 199-203, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-36858547

RESUMO

Vitamin K plays an important role in blood coagulation and bone formation. However, apart from the liver and bone, the role of vitamin K in other tissues remains unknown. Previously, we have reported on high concentrations of vitamin K in the mouse brain and investigated vitamin K conversion in brain tissue. This led us to hypothesised the possibility of vitamin K contributing significantly towards maintenance and function of the cranial nervous system. In this review, we summarise the synthesis of novel vitamin K derivatives, their neuronal differentiation inducing activities and the induction mechanism. The findings from this study will provide insights into the physiological roles of vitamin K in the brain.


Assuntos
Encéfalo , Vitamina K , Animais , Camundongos , Coagulação Sanguínea , Fígado , Regeneração Nervosa
16.
ACS Omega ; 8(45): 42248-42263, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024673

RESUMO

From our compound library of vitamin K derivatives, we found that some compounds exhibited anti-SARS-CoV-2 activity in VeroE6/TMPRSS2 cells. The common structure of these compounds was menaquinone-2 (MK-2) with either the m-methylphenyl or the 1-naphthyl group introduced at the end of the side chain. Therefore, new vitamin K derivatives having more potent anti-SARS-CoV-2 activity were explored by introducing various functional groups at the ω-position of the side chain. MK-2 derivatives with a purine moiety showed the most potent antiviral activity among the derivatives. We also found that their mechanism of action was the inhibition of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The chemical structures of our compounds were completely different from those of nucleic acid derivatives such as remdesivir and molnupiravir, clinically approved RdRp inhibitors for COVID-19 treatment, suggesting that our compounds may be effective against viruses resistant to these nucleic acid derivatives.

17.
J Biochem ; 170(6): 699-711, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244779

RESUMO

Since the discovery of nucleotides over 100 years ago, extensive studies have revealed the importance of nucleotides for homeostasis, health and disease. However, there remains no established method to investigate quantitatively and accurately intact nucleotide incorporation into RNA and DNA. Herein, we report a new method, Stable-Isotope Measure Of Influxed Ribonucleic Acid Index (SI-MOIRAI), for the identification and quantification of the metabolic fate of ribonucleotides and their precursors. SI-MOIRAI, named after Greek goddesses of fate, combines a stable isotope-labelling flux assay with mass spectrometry to enable quantification of the newly synthesized ribonucleotides into r/m/tRNA under a metabolic stationary state. Using glioblastoma (GBM) U87MG cells and a patient-derived xenograft (PDX) GBM mouse model, SI-MOIRAI analyses showed that newly synthesized GTP was particularly and disproportionally highly utilized for rRNA and tRNA synthesis but not for mRNA synthesis in GBM in vitro and in vivo. Furthermore, newly synthesized pyrimidine nucleotides exhibited a significantly lower utilization rate for RNA synthesis than newly synthesized purine nucleotides. The results reveal the existence of discrete pathways and compartmentalization of purine and pyrimidine metabolism designated for RNA synthesis, demonstrating the capacity of SI-MOIRAI to reveal previously unknown aspects of nucleotide biology.


Assuntos
Glioblastoma/metabolismo , Nucleotídeos/metabolismo , RNA Neoplásico/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Espectrometria de Massas , Camundongos , Transplante de Neoplasias
18.
Front Mol Biosci ; 8: 707439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307463

RESUMO

RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.

19.
Sci Rep ; 10(1): 5677, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231239

RESUMO

Recent studies have suggested that vitamin D activities involve vitamin D receptor (VDR)-dependent and VDR-independent effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 25-hydroxyvitamin D3 (25(OH)D3) and ligand-independent effects of the VDR. Here, we describe a novel in vivo system using genetically modified rats deficient in the Cyp27b1 or Vdr genes. Type II rickets model rats with a mutant Vdr (R270L), which recognizes 1,25(OH)2D3 with an affinity equivalent to that for 25(OH)D3, were also generated. Although Cyp27b1-knockout (KO), Vdr-KO, and Vdr (R270L) rats each showed rickets symptoms, including abnormal bone formation, they were significantly different from each other. Administration of 25(OH)D3 reversed rickets symptoms in Cyp27b1-KO and Vdr (R270L) rats. Interestingly, 1,25(OH)2D3 was synthesized in Cyp27b1-KO rats, probably by Cyp27a1. In contrast, the effects of 25(OH)D3 on Vdr (R270L) rats strongly suggested a direct action of 25(OH)D3 via VDR-genomic pathways. These results convincingly suggest the usefulness of our in vivo system.


Assuntos
Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Calcifediol/genética , Calcifediol/metabolismo , Calcitriol/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Raquitismo/metabolismo , Vitamina D/análogos & derivados , Vitamina D/genética , Vitamina D3 24-Hidroxilase/genética
20.
J Steroid Biochem Mol Biol ; 185: 71-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031146

RESUMO

We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 µg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Conservadores da Densidade Óssea/farmacologia , Calcifediol/farmacologia , Calcitriol/biossíntese , Calcitriol/sangue , Raquitismo/tratamento farmacológico , Animais , Densidade Óssea/efeitos dos fármacos , Calcitriol/genética , Cálcio/sangue , Colestanotriol 26-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/sangue , Fósforo/sangue , Vitamina D3 24-Hidroxilase/biossíntese , Vitamina D3 24-Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA