Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 116: 105305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482166

RESUMO

Hu proteins are members of the RNA-binding protein (RBP) family and play a pivotal role in the regulation of post-transcriptional processes. Through interaction with selected mRNAs, RBPs regulate their function and stability; as a consequence, RBP dysregulation can cause abnormal translation of key proteins involved in several pathologies. In the past few years, this observation has sparked interest to develop new treatments against these pathologies by using small molecules able to modulate RBP activity. Among the four Hu proteins, we have directed our efforts towards the isoform HuR, which is mainly involved in cancer, inflammation and retinopathy. Aimed at developing compounds able to modulate the stability of HuR-mRNA complexes, in the present work, we applied a biophysical fragment screening by assessing a library of halogen-enriched heterocyclic fragments (HEFLibs) via Surface Plasmon Resonance (SPR) and Saturation Transfer Difference (STD) NMR to select promising fragments able to interact with HuR. One selected fragment and a few commercially available congeners were exploited to design and synthesize focused analogues of compound N-(3-chlorobenzyl)-N-(3,5-dihydroxyphenethyl)-4-hydroxybenzamide (1), our previously reported hit. STDNMR spectroscopy, molecular modeling, and SPR offered further insight into the HuR-small molecule interaction and showed that fragment-based approaches represent a promising and yet underexplored strategy to tackle such unusual targets. Lastly, fluorescence polarization (FP) studies revealed the capability of the new compounds to interfere with the formation of the HuR-mRNA complex. This is, to our knowledge, the first fragment-based campaign performed on the Hu protein class, and one of the few examples in the larger RBP field and constitutes an important step in the quest for the rational modulation of RBPs and related RNA functions by small molecules.


Assuntos
Ácidos Picolínicos/química , Proteínas de Ligação a RNA/química , Humanos , Modelos Moleculares , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ressonância de Plasmônio de Superfície
2.
Org Biomol Chem ; 13(46): 11263-77, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26411373

RESUMO

The enzyme DXS catalyzes the first, rate-limiting step of the 2-C-methyl-d-erythritol-4-phosphate (MEP, 1) pathway using thiamine diphosphate (ThDP) as cofactor; the DXS-catalyzed reaction constitutes also the first step in vitamin B1 and B6 metabolism in bacteria. DXS is the least studied among the enzymes of this pathway in terms of crystallographic information, with only one complete crystal structure deposited in the Protein Data Bank (Deinococcus radiodurans DXS, PDB: ). We synthesized a series of thiamine and ThDP derivatives and tested them for their biochemical activity against two DXS orthologues, namely D. radiodurans DXS and Mycobacterium tuberculosis DXS. These experimental results, combined with advanced docking studies, led to the development and validation of a homology model of M. tuberculosis DXS, which, in turn, will guide medicinal chemists in rationally designing potential inhibitors for M. tuberculosis DXS.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Tiamina/análogos & derivados , Tiamina/farmacologia , Transferases/antagonistas & inibidores , Transferases/química , Deinococcus/química , Deinococcus/enzimologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Conformação Proteica , Homologia Estrutural de Proteína , Transferases/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
Nat Metab ; 4(5): 534-546, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35655026

RESUMO

Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor.


Assuntos
Fumaratos/farmacologia , Interferons , Macrófagos , Maleatos/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Carboxiliases , Catálise , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo
4.
Medchemcomm ; 8(5): 1121-1130, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108823

RESUMO

Energy-coupling factor (ECF) transporters are involved in the uptake of micronutrients in bacteria. The transporters capture the substrate by high-affinity binding proteins, the so-called S-components. Here, we present the analysis of two regions of the substrate-binding pocket of the thiamine-specific S-component in Lactococcus lactis, ThiT. First, interaction of the thiazolium ring of thiamine with residues Trp34, His125 and Glu84 by π-π-stacking and cation-π is studied, and second, the part of the binding pocket that extends from the hydroxyl group. We mutated either the transported ligand (chemically) or the protein (genetically). Surprisingly, modifications in the thiazolium ring by introducing substituents with opposite electronic effects had similar effects on the binding affinity. We hypothesize that the electronic effects are superseeded by steric effects of the added substituents, which renders the study of isolated interactions difficult. Amino acid substitutions in ThiT indicate that the electrostatic interaction facilitated by residue Glu84 of ThiT and thiamine is necessary for picomolar affinity. Deazathiamine derivatives that explore the subpocket of the binding site extending from the hydroxyl group of thiamine bind with high affinity to ThiT and may be developed into selective inhibitors of thiamine transport by ECF transporters. Molecular-dynamics simulations suggest that two of these derivatives may not only bind to ThiT, but could also be transported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA