Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 17(1): 239, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228897

RESUMO

BACKGROUND: Dihydroflavonol 4-reductase (DFR) is the key enzyme committed to anthocyanin and proanthocyanidin biosynthesis in the flavonoid biosynthetic pathway. DFR proteins can catalyse mainly the three substrates (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), and show different substrate preferences. Although relationships between the substrate preference and amino acids in the region responsible for substrate specificity have been investigated in several plant species, the molecular basis of the substrate preference of DFR is not yet fully understood. RESULTS: By using degenerate primers in a PCR, we isolated two cDNA clones that encoded DFR in buckwheat (Fagopyrum esculentum). Based on sequence similarity, one cDNA clone (FeDFR1a) was identical to the FeDFR in DNA databases (DDBJ/Gen Bank/EMBL). The other cDNA clone, FeDFR2, had a similar sequence to FeDFR1a, but a different exon-intron structure. Linkage analysis in an F2 segregating population showed that the two loci were linked. Unlike common DFR proteins in other plant species, FeDFR2 contained a valine instead of the typical asparagine at the third position and an extra glycine between sites 6 and 7 in the region that determines substrate specificity, and showed less activity against dihydrokaempferol than did FeDFR1a with an asparagine at the third position. Our 3D model suggested that the third residue and its neighbouring residues contribute to substrate specificity. FeDFR1a was expressed in all organs that we investigated, whereas FeDFR2 was preferentially expressed in roots and seeds. CONCLUSIONS: We isolated two buckwheat cDNA clones of DFR genes. FeDFR2 has unique structural and functional features that differ from those of previously reported DFRs in other plants. The 3D model suggested that not only the amino acid at the third position but also its neighbouring residues that are involved in the formation of the substrate-binding pocket play important roles in determining substrate preferences. The unique characteristics of FeDFR2 would provide a useful tool for future studies on the substrate specificity and organ-specific expression of DFRs.


Assuntos
Oxirredutases do Álcool/genética , Antocianinas/metabolismo , Fagopyrum/genética , Proteínas de Plantas/genética , Proantocianidinas/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Fagopyrum/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
2.
J Plant Physiol ; 205: 41-47, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27607249

RESUMO

Proanthocyanidins (PAs) are a major group of flavonoids synthesized via the phenylpropanoid biosynthesis pathway, however the pathway has not been fully characterized in buckwheat. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are involved in the last steps of PA biosynthesis. To isolate the genes for these enzymes from buckwheat we performed PCR using degenerate primers and obtained cDNAs of ANR and LAR, which we designated FeANR and FeLAR1. A search for homologs in a buckwheat genome database with both sequences returned two more LAR sequences, designated FeLAR2 and FeLAR3. Linkage analysis with an F2 segregating population indicated that the three LAR loci were not genetically linked. We detected high levels of PAs in roots and cotyledons of buckwheat seedlings and in buds and flowers of mature plants. FeANR and FeLAR1-3 were expressed in most organs but had different expression patterns. Our findings would be useful for breeding and further analysis of PA synthesis and its regulation in buckwheat.


Assuntos
Antocianinas/metabolismo , Fagopyrum/enzimologia , Oxirredutases/genética , Proantocianidinas/metabolismo , Vias Biossintéticas , Cruzamento , Cotilédone/enzimologia , Cotilédone/genética , DNA Complementar/genética , Fagopyrum/genética , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos/genética , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plântula/enzimologia , Plântula/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA