Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Int ; 176: 105726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556052

RESUMO

We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.


Assuntos
Envelhecimento , Encéfalo , Efeito Espectador , Ratos Wistar , Medula Espinal , Animais , Masculino , Ratos , Envelhecimento/efeitos da radiação , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Efeito Espectador/efeitos da radiação , Medula Espinal/efeitos da radiação , Medula Espinal/metabolismo , Medula Espinal/patologia , Imageamento por Ressonância Magnética , Fracionamento da Dose de Radiação
2.
Biomedicines ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927501

RESUMO

Amyotrophic lateral sclerosis is a severe neurodegenerative disease whose exact cause is still unclear. Currently, research attention is turning to the mitochondrion as a critical organelle of energy metabolism. Current knowledge is sufficient to confirm the involvement of the mitochondria in the pathophysiology of the disease, since the mitochondria are involved in many processes in the cell; however, the exact mechanism of involvement is still unclear. We used peripheral blood mononuclear cells isolated from whole fresh blood from patients with amyotrophic lateral sclerosis for measurement and matched an age- and sex-matched set of healthy subjects. The group of patients consisted of patients examined and diagnosed at the neurological clinic of the University Hospital Martin. The set of controls consisted of healthy individuals who were actively searched, and controls were selected on the basis of age and sex. The group consisted of 26 patients with sporadic forms of ALS (13 women, 13 men), diagnosed based on the definitive criteria of El Escorial. The average age of patients was 54 years, and the average age of healthy controls was 56 years. We used a high-resolution O2K respirometry method, Oxygraph-2k, to measure mitochondrial respiration. Basal respiration was lower in patients by 29.48%, pyruvate-stimulated respiration (respiratory chain complex I) was lower by 29.26%, and maximal respiratory capacity was lower by 28.15%. The decrease in succinate-stimulated respiration (respiratory chain complex II) was 26.91%. Our data confirm changes in mitochondrial respiration in ALS patients, manifested by the reduced function of complex I and complex II of the respiratory chain. These defects are severe enough to confirm this disease's hypothesized mitochondrial damage. Therefore, research interest in the future should be directed towards a deeper understanding of the involvement of mitochondria and respiratory complexes in the pathophysiology of the disease. This understanding could develop new biomarkers in diagnostics and subsequent therapeutic interventions.

3.
Metabolites ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057679

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease type of motor neuron disorder characterized by degeneration of the upper and lower motor neurons resulting in dysfunction of the somatic muscles of the body. The ALS condition is manifested in progressive skeletal muscle atrophy and spasticity. It leads to death, mostly due to respiratory failure. Within the pathophysiology of the disease, muscle energy metabolism seems to be an important part. In our study, we used blood plasma from 25 patients with ALS diagnosed by definitive El Escorial criteria according to ALSFR-R (Revised Amyotrophic Lateral Sclerosis Functional Rating Scale) criteria and 25 age and sex-matched subjects. Aside from standard clinical biochemical parameters, we used the NMR (nuclear magnetic resonance) metabolomics approach to determine relative plasma levels of metabolites. We observed a decrease in total protein level in blood; however, despite accelerated skeletal muscle catabolism characteristic for ALS patients, we did not detect changes in plasma levels of essential amino acids. When focused on alterations in energy metabolism within muscle, compromised creatine uptake was accompanied by decreased plasma creatinine. We did not observe changes in plasma levels of BCAAs (branched chain amino acids; leucine, isoleucine, valine); however, the observed decrease in plasma levels of all three BCKAs (branched chain alpha-keto acids derived from BCAAs) suggests enhanced utilization of BCKAs as energy substrate. Glutamine, found to be increased in blood plasma in ALS patients, besides serving for ammonia detoxification, could also be considered a potential TCA (tricarboxylic acid) cycle contributor in times of decreased pyruvate utilization. When analyzing the data by using a cross-validated Random Forest algorithm, it finished with an AUC of 0.92, oob error of 8%, and an MCC (Matthew's correlation coefficient) of 0.84 when relative plasma levels of metabolites were used as input variables. Although the discriminatory power of the system used was promising, additional features are needed to create a robust discriminatory model.

4.
Sci Rep ; 14(1): 19267, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164335

RESUMO

Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.


Assuntos
Encéfalo , Magnésio , Humanos , Masculino , Feminino , Criança , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Magnésio/metabolismo , Disferlina/metabolismo , Disferlina/genética , Imageamento por Ressonância Magnética , Metabolismo Energético , Adolescente , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Espectroscopia de Ressonância Magnética , Adulto , Atrofia Muscular , Miopatias Distais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA