RESUMO
BACKGROUND: In a short time, the COVID-19 pandemic turned into a global emergency. The fear of becoming infected and the lockdown measures have drastically changed people's daily routine. The aim of this study is to establish the psychological impact that the COVID-19 pandemic is entailing, particularly with regards to levels of stress, anxiety and depression, and to the risks of developing Post-Traumatic Stress Disorder (PTSD). METHODS: The study, carried out with a sample of 1612 subjects distributed in seven countries (Australia, China, Ecuador, Iran, Italy, Norway and the United States), allowed us to collect information about the psychological impact of COVID-19. RESULTS: The findings of this study show that the levels of stress, depression and anxiety, as well as the risks of PTSD, are higher than average in over half of the considered sample. The severity of these disorders significantly depends on gender, type of outdoor activities, characteristics of their homes, eventual presence of infected acquaintances, time dedicated to looking for related information (in the news and social networks), type of source information and, in part, to the level of education and income. CONCLUSIONS: We conclude that COVID-19 has a very strong psychological impact on the global population. This appears to be linked to the coping strategies adopted, level of mindful awareness, socio-demographic variables, people's habits and the way individuals use means of communication and information.
Assuntos
COVID-19 , Pandemias , Ansiedade , Austrália , China , Controle de Doenças Transmissíveis , Depressão , Humanos , Irã (Geográfico) , Itália , Noruega , SARS-CoV-2 , Estresse PsicológicoRESUMO
In order to investigate the methane adsorption characteristics of coal seam materials in a "solid-gas" coupling physical simulation experiment, activated alumina, silica gel, the 3Å molecular sieve, 4Å molecular sieve and 5Å molecular sieve were selected as adsorption materials. According to the pore structure and adsorption characteristics, coal samples at the Aiweiergou #1890 working face were prepared as compared materials. The WY-98A methane adsorption coefficient measuring instrument was used to carry out this adsorption experiment under different temperatures, particle sizes and moisture contents. The results suggested that the adsorption principles of three kinds of molecular sieves under multiple factors do not fully fit a Langmuir adsorption model, and cannot be used as adsorption materials. The changing trend of the adsorption increment of activated alumina and silica gel are similar to that of coal samples, so they can be used as a coal-like materials. The methane adsorption coefficient a value changing trends of activated alumina and silica gel appear to be the same as the Aiweiergou #1890 coal samples, but the results from silica gel are closer to that of coal samples. Thus, silica gel is preferred as the adsorption material. The result provides an experimental basis for the selection of methane-adsorbing materials and carrying out "solid-gas" coupling physical simulation experiments in a physically similar testing model.