Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(3): 1187-1197, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015533

RESUMO

The "magic methyl" effect, a dramatic boost in the potency of biologically active compounds from the incorporation of a single methyl group, provides a simple yet powerful strategy employed by medicinal chemists in the drug discovery process. Despite significant advances, methodologies that enable the selective C(sp3)-H methylation of structurally complex medicinal agents remain very limited. In this work, we disclose a modular, efficient, and selective strategy for the α-methylation of protected amines (i.e., amides, carbamates, and sulfonamides) by means of electrochemical oxidation. Mechanistic analysis guided our development of an improved electrochemical protocol on the basis of the classic Shono oxidation reaction, which features broad reaction scope, high functional group compatibility, and operational simplicity. Importantly, this reaction system is amenable to the late-stage functionalization of complex targets containing basic nitrogen groups that are prevalent in medicinally active agents. When combined with organozinc-mediated C-C bond formation, our protocol enabled the direct methylation of a myriad of amine derivatives including those that have previously been explored for the "magic methyl" effect. This synthesis strategy thus circumvents multistep de novo synthesis that is currently necessary to access such compounds and has the potential to accelerate drug discovery efforts.


Assuntos
Hidrogênio , Metilação
2.
Bioconjug Chem ; 32(1): 111-120, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33306347

RESUMO

Virus-like particles (VLPs) show considerable promise for the in vivo delivery of therapeutic compounds such as bioactive venom peptides. While loading and targeting protocols have been developed for numerous VLP prototypes, induced disassembly under physiological conditions of neutral pH, moderate temperature, and aqueous medium remain a challenge. Here, we implement and evaluate a general mechanism, based on ring-opening metathesis polymerization (ROMP), for controllable VLP disassembly. This mechanism is independent of cell-specific factors or the manipulation of environmental conditions such as pH and temperature that cannot be readily controlled in vivo. The ROMP substrate norbornene is covalently conjugated to surface-exposed lysine residues of a P22 bacteriophage-derived VLP, and ROMP is induced by treatment with the water-soluble ruthenium catalyst AquaMet. Disruption of the P22 shell and release of a GFP reporter is confirmed via native agarose electrophoresis, TEM, and dynamic light scattering (DLS) analyses. Our ROMP disassembly strategy does not depend on the particular structure or morphology of the P22 nanocontainer and is adaptable to other VLP prototypes for the potential delivery of venom peptides for pharmacological applications.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos/administração & dosagem , Peçonhas/administração & dosagem , Vírion/química , Catálise , Humanos , Microscopia Eletrônica de Transmissão , Polimerização , Peçonhas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA