Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 210(2): 204-215, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480261

RESUMO

Antagonizing the CD47-signal regulatory protein (SIRP)α pathway, a critical myeloid checkpoint, promotes antitumor immunity. In this study, we describe the development of AL008, a pan-allelic, SIRPα-specific Ab that triggers the degradation of SIRPα and, concurrently, stimulates FcγR activation of myeloid cells through an engineered Fc domain. AL008 showed superior enhancement of phagocytosis of tumor cells opsonized with antitumor Ag Abs compared with another SIRPα Ab tested. Unlike ligand-blocking SIRPα Abs, AL008 demonstrated single-agent activity by increasing tumor cell engulfment by human monocyte-derived macrophages even in the absence of opsonizing agents. This effect was due to enhanced Fc function, as blocking FcγR2A abrogated AL008-mediated phagocytic activity. AL008 also promoted human monocyte-derived dendritic cell-mediated T cell proliferation. In humanized mouse models, AL008 induced internalization of SIRPα and increased expression of CD86 and HLA-DR on human tumor-associated macrophages, confirming that the mechanism of action is retained in vivo. Monotherapy treatment with AL008 significantly reduced tumor growth in humanized mice implanted with human MDA-MB-231 tumor cells. AL008 also significantly potentiated the effects of T cell checkpoint blockade with anti-programmed death ligand-1 in syngeneic tumor models. This dual and specific mechanism of AL008, to our knowledge, provides a novel therapeutic strategy for targeting myeloid cells for immune activation.


Assuntos
Neoplasias , Receptores Fc , Humanos , Camundongos , Animais , Receptores Fc/metabolismo , Imunoterapia , Fagocitose , Macrófagos , Neoplasias/patologia , Antígenos de Diferenciação , Antígeno CD47/metabolismo
2.
Sci Rep ; 9(1): 2443, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792442

RESUMO

Antibody-drug conjugates (ADCs) are promising therapies for haematological cancers. Historically, their therapeutic benefit is due to ADC targeting of lineage-restricted antigens. The C-X-C motif chemokine receptor 4 (CXCR4) is attractive for targeted therapy of haematological cancers, given its expression in multiple tumour types and role in cancer "homing" to bone marrow. However, CXCR4 is also expressed in haematopoietic cells and other normal tissues, raising safety challenges to the development of anti-CXCR4 ADCs for cancer treatment. Here, we designed the first anti-CXCR4 ADC with favourable therapeutic index, effective in xenografts of haematopoietic cancers resistant to standard of care and anti-CXCR4 antibodies. We screened multiple ADC configurations, by varying type of linker-payload, drug-to-antibody ratio (DAR), affinity and Fc format. The optimal ADC bears a non-cleavable linker, auristatin as payload at DAR = 4 and a low affinity antibody with effector-reduced Fc. Contrary to other drugs targeting CXCR4, anti-CXCR4 ADCs effectively eliminated cancer cells as monotherapy, while minimizing leucocytosis. The optimal ADC selectively eliminated CXCR4+ cancer cells in solid tumours, but showed limited toxicity to normal CXCR4+ tissues, sparing haematopoietic stem cells and progenitors. Our work provides proof-of-concept that through empirical ADC design, it is possible to target proteins with broad normal tissue expression.


Assuntos
Antineoplásicos Imunológicos , Desenho de Fármacos , Imunoconjugados , Receptores CXCR4/imunologia , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/síntese química , Antineoplásicos Imunológicos/química , Células CHO , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/efeitos adversos , Fragmentos Fab das Imunoglobulinas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores CXCR4/antagonistas & inibidores , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Nat Neurosci ; 6(12): 1270-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14595443

RESUMO

Netrin-G1 is a lipid-anchored protein that is structurally related to the netrin family of axon guidance molecules. Netrin-G1 does not bind any of the known netrin receptors and its function is not known. Here we identify human netrin-G1 ligand (NGL-1), a transmembrane protein containing leucine-rich repeat (LRR) and immunoglobulin (Ig) domains that specifically interacts with netrin-G1 through its LRR region. Whereas netrin-G1 is expressed highly in mouse thalamic axons, NGL-1 is most abundant in the striatum and the cerebral cortex--the intermediate and final targets, respectively, of thalamocortical axons (TCAs). Surface-bound NGL-1 stimulates, but soluble NGL-1 disrupts, the growth of embryonic thalamic axons, and in vitro data indicate that NGL-1 activity may be mediated at least partially by netrin-G1. Our findings provide evidence that netrin-G1 functions as an important component of the NGL-1 receptor to promote TCA outgrowth and that membrane-bound netrins can participate in receiving axonal signaling pathways.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Tálamo/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Córtex Cerebral/embriologia , Embrião de Galinha , Feminino , Humanos , Ligantes , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Receptores de Netrina , Netrinas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Superfície Celular/metabolismo , Tálamo/embriologia
4.
Oncotarget ; 9(71): 33446-33458, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323890

RESUMO

Epidermal growth factor receptor (EGFR) is a clinically validated target and often overexpressed in some solid tumors. Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies have been approved for treatment of NSCLC, head and neck cancers and colorectal cancers. However, clinical response is limited and often accompanied by significant toxicities due to normal tissue expression. To improve the effectiveness of targeting EGFR while minimizing the toxicities on normal tissues, we developed a low-affinity anti-EGFR antibody drug conjugate (ADC), RN765C. Potent in vitro cytotoxicity of RN765C, with nanomolar to subnanomolar EC50, was observed on a panel of cancer cell lines expressing moderate to high level of EGFR. In contrast, RN765C was less effective in killing normal human keratinocytes, presumably due to its lower receptor expression. Mechanistically, RN765C has multiple modes of action: inducing payload mediated mitotic arrest and cell death, blocking EGFR pathway signal and mediating antibody dependent cell cytotoxicity. In preclinical studies, a single dose of RN765C at 1.5-3 mg/kg was generally sufficient to induce tumor regression in multiple cell line and patient-derived xenograft models, including those that are resistant to EGFR-directed tyrosine kinase inhibitors. Our data support further investigation of RN765C in the clinic to treat EGFR expressing solid tumors.

5.
Blood Adv ; 1(15): 1088-1100, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296751

RESUMO

The chemokine receptor CXCR4 is highly expressed and associated with poor prognosis in multiple malignancies. Upon engagement by its ligand, CXCL12, CXCR4 triggers intracellular signaling pathways that control trafficking of cells to tissues where the ligand is expressed, such as the bone marrow (BM). In hematologic cancers, CXCR4-driven homing of malignant cells to the BM protective niche is a key mechanism driving disease and therapy resistance. We developed a humanized CXCR4 immunoglobulin G1 (IgG1) antibody (Ab), PF-06747143, which binds to CXCR4 and inhibits CXCL12-mediated signaling pathways, as well as cell migration. In in vivo preclinical studies, PF-06747143 monotherapy rapidly and transiently mobilized cells from the BM into the peripheral blood. In addition, PF-06747143 effectively induced tumor cell death via its Fc constant region-mediated effector function. This Fc-mediated cell killing mechanism not only enhanced antitumor efficacy, but also played a role in reducing the duration of cell mobilization, when compared with an IgG4 version of the Ab, which does not have Fc-effector function. PF-06747143 treatment showed strong antitumor effect in multiple hematologic tumor models including non-Hodgkin lymphoma (NHL), acute myeloid leukemia (AML), and multiple myeloma (MM). Importantly, PF-06747143 synergized with standard-of-care agents in a chemoresistant AML patient-derived xenograft model and in an MM model. These findings suggest that PF-06747143 is a potential best-in-class anti-CXCR4 antagonist for the treatment of hematologic malignancies, including in the resistant setting. PF-06747143 is currently in phase 1 clinical trial evaluation (registered at www.clinicaltrials.gov as #NCT02954653).

6.
Mol Cancer Ther ; 15(11): 2698-2708, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27582525

RESUMO

Trop-2, also known as TACSTD2, EGP-1, GA733-1, and M1S1, is frequently expressed on a variety of human carcinomas, and its expression is often associated with poor prognosis of the diseases. However, it is also present on the epithelium of several normal tissues. A comprehensively designed Trop-2-targeting antibody-drug conjugate (ADC), balancing both efficacy and toxicity, is therefore necessary to achieve clinical utility. To this end, we developed a cleavable Trop-2 ADC (RN927C) using a site-specific transglutaminase-mediated conjugation method and a proprietary microtubule inhibitor (MTI) linker-payload, PF-06380101. Robust in vitro cytotoxicity of RN927C was observed on a panel of Trop-2-expressing tumor cell lines, with IC50 generally in the subnanomolar range. As expected for an MTI-containing ADC, RN927C readily induced mitotic arrest of treated cells in vitro and in vivo, followed by subsequent cell death. The in vivo efficacy of RN927C was tested in multiple cell line and patient-derived xenograft tumor models, including pancreatic, lung, ovarian, and triple-negative breast tumor types. Single-dose administration of RN927C at 0.75 to 3 mg/kg was generally sufficient to induce sustained regression of Trop-2-expressing tumors and showed superior efficacy over standard treatment with paclitaxel or gemcitabine. Administration of RN927C in nonhuman primate toxicity studies resulted in target-mediated effects in skin and oral mucosa, consistent with Trop-2 expression in these epithelial tissues with minimal, non-dose limiting off-target toxicities. On the basis of the combined efficacy and safety results, RN927C is postulated to have a favorable therapeutic index for treatment of solid tumors. Mol Cancer Ther; 15(11); 2698-708. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/farmacologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estabilidade de Medicamentos , Feminino , Expressão Gênica , Humanos , Imunoconjugados/química , Lisossomos , Camundongos , Mitose/efeitos dos fármacos , Mitose/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Pain ; 116(1-2): 8-16, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15927377

RESUMO

Pain and cachexia are two of the most debilitating aspects of rheumatoid arthritis. Despite that, the mechanisms by which they are mediated are not well understood. We provide evidence that nerve growth factor (NGF), a secreted regulatory protein that controls neuronal survival during development, is a key mediator of pain and weight loss in auto-immune arthritis. Function blocking antibodies to NGF completely reverse established pain in rats with fully developed arthritis despite continuing joint destruction and inflammation. Likewise, these antibodies reverse weight loss while not having any effect on levels of the pro-cachectic agent tumor necrosis factor (TNF). Taken together, these findings argue that pathological joint pain and joint destruction are mechanistically independent processes and that NGF regulates an alternative cachexia pathway that is independent or downstream of TNF.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Caquexia/terapia , Hiperalgesia/terapia , Fator de Crescimento Neural/fisiologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/complicações , Caquexia/etiologia , Relação Dose-Resposta a Droga , Proteínas de Escherichia coli , Humanos , Hiperalgesia/etiologia , Indometacina/uso terapêutico , Masculino , Fator de Crescimento Neural/imunologia , Medição da Dor/métodos , Ratos , Ratos Endogâmicos Lew , Índice de Gravidade de Doença , Fatores de Tempo , Fator de Crescimento Transformador alfa/sangue , Redução de Peso/efeitos dos fármacos
8.
MAbs ; 6(4): 1059-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830649

RESUMO

Nerve growth factor (NGF) is indispensable during normal embryonic development and critical for the amplification of pain signals in adults. Intervention in NGF signaling holds promise for the alleviation of pain resulting from human diseases such as osteoarthritis, cancer and chronic lower back disorders. We developed a fast, high-fidelity method to convert a hybridoma-derived NGF-targeted mouse antibody into a clinical candidate. This method, termed Library Scanning Mutagenesis (LSM), resulted in the ultra-high affinity antibody tanezumab, a first-in-class anti-hyperalgesic specific for an NGF epitope. Functional and structural comparisons between tanezumab and the mouse 911 precursor antibody using neurotrophin-specific cell survival assays and X-ray crystal structures of both Fab-antigen complexes illustrated high fidelity retention of the NGF epitope. These results suggest the potential for wide applicability of the LSM method for optimization of well-characterized antibodies during humanization.


Assuntos
Anticorpos Monoclonais Murinos , Complexo Antígeno-Anticorpo , Epitopos , Mutagênese , Fator de Crescimento Neural , Adulto , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/imunologia , Células Cultivadas , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Dor Lombar/tratamento farmacológico , Dor Lombar/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/química , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/imunologia , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Manejo da Dor/métodos , Estrutura Quaternária de Proteína , Anticorpos de Cadeia Única
9.
Chem Biol ; 20(2): 161-7, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23438745

RESUMO

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Assuntos
Anticorpos/química , Antineoplásicos/química , Imunoconjugados/química , Animais , Anticorpos/imunologia , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Ratos , Transglutaminases/metabolismo , Moduladores de Tubulina/química
10.
J Mol Biol ; 421(4-5): 525-36, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22197375

RESUMO

Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of ß-amyloid (Aß) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aß40. Ponezumab can label Aß that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aß. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aß present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aß40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aß. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aß40, we determined the X-ray crystal structure of ponezumab in complex with Aß40 and found that the Aß40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AßV40 in the Aß-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aß40 and the brain Aß-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/sangue , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Encéfalo/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Injeções Intravenosas , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Fármacos Neuroprotetores/administração & dosagem , Plasma/química , Ligação Proteica , Conformação Proteica
11.
J Mol Biol ; 420(3): 204-19, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22543237

RESUMO

Bispecific antibodies and antibody fragments are a new class of therapeutics increasingly utilized in the clinic for T cell recruitment (catumaxomab anti-EpCAM/CD3 and blinatumomab anti-CD19/CD3), increase in the selectivity of targeting, or simultaneous modulation of multiple cellular pathways. While the clinical potential for certain bispecific antibody formats is clear, progress has been hindered because they are often difficult to manufacture, may suffer from suboptimal pharmacokinetic properties, and may be limited due to potential immunogenicity issues. Current state-of-the-art human IgG-like bispecific technologies require co-expression of two heavy chains with a single light chain, use crossover domains to segregate light chains, or utilize scFv (single-chain fragment variable)-Fc fusion. We have engineered both human IgG1 and IgG2 subtypes, with minimal point mutations, to form full-length bispecific human antibodies with high efficiency and in high purity. In our system, the two antibodies of interest can be expressed and purified separately, mixed together under appropriate redox conditions, resulting in a formation of a stable bispecific antibody with high yields. With this approach, it is not necessary to generate new antibodies that share a common light chain, therefore allowing the immediate use of an existing antibody regardless of whether it has been generated via standard hybridoma or display methods. We demonstrate the generality of the approach and show that these bispecific antibodies have properties similar to those of wild-type IgGs, and we further demonstrate the utility of the technology with an example of a CD3/CD20 bispecific antibody that effectively depletes B cells in vitro and in vivo.


Assuntos
Anticorpos Biespecíficos/imunologia , Imunoglobulina G/metabolismo , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/isolamento & purificação , Anticorpos Biespecíficos/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Especificidade de Anticorpos , Antígenos CD20/imunologia , Linfócitos B/imunologia , Complexo CD3/imunologia , Cetuximab , Citotoxicidade Imunológica , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação Puntual , Ratos , Ratos Sprague-Dawley , Receptores Fc/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA