Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Forensic Toxicol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298088

RESUMO

PURPOSE: We aimed to explore the metabolite products of 1,2-diacetylbenzene (DAB) and investigate their harmful effects, physicochemical properties, and biological activities, along with those of DAB itself. METHODS: Key approaches included MetaTox, PASS online, ADMESWISS, ADMETlab 2.0, molecular docking, and molecular dynamic simulation to identify metabolites, toxic effects, Lipinski's rule criteria, absorption, distribution, metabolism, and excretion properties, interactions with cytochrome (CYP) 450 isoforms, and the stability of the DAB-cytochrome complex. RESULTS: A total of 13 metabolite products from DAB were identified, involving Phase I reactions (aliphatic hydroxylation, epoxidation, oxidative dehydrogenation, and hydrogenation) and Phase II reactions (oxidative sulfation and methylation). Molecular dynamics and modeling revealed a stable interaction between CYP1A2 and DAB, suggesting the involvement of CYP1A2 in DAB metabolism. All studied compounds adhered to Lipinski's rule, indicating their potential as inducers or activators of toxic mechanisms. The physicochemical parameters and pharmacokinetics of the investigated compounds were consistent with their harmful effects, which included neurotoxic, nephrotoxic, endocrine disruptor, and hepatotoxic consequences due to their high gastrointestinal absorption and ability to cross the blood-brain barrier. Various CYP450 isoforms exhibited different functions, and the compounds were found to act as superoxide dismutase inhibitors, neuropeptide Y2 antagonists, glutaminase inhibitors, and activators of caspases 3 and 8. DAB and its metabolites were also associated with apoptosis, oxidative stress, and neuroendocrine disruption. CONCLUSION: The toxic effects of DAB and its metabolites were predicted in this study. Further research is warranted to explore their effects on other organs, such as the liver and kidneys, and to validate our findings.

2.
Immunohorizons ; 8(1): 1-18, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169549

RESUMO

Despite treatment advances, acute kidney injury (AKI)-related mortality rates are still high in hospitalized adults, often due to sepsis. Sepsis and AKI could synergistically worsen the outcomes of critically ill patients. TLR4 signaling and mitochondrial antiviral signaling protein (MAVS) signaling are innate immune responses essential in kidney diseases, but their involvement in sepsis-associated AKI (SA-AKI) remains unclear. We studied the role of MAVS in kidney injury related to the TLR4 signaling pathway using a murine LPS-induced AKI model in wild-type and MAVS-knockout mice. We confirmed the importance of M1 macrophage in SA-AKI through in vivo assessment of inflammatory responses. The TLR4 signaling pathway was upregulated in activated bone marrow-derived macrophages, in which MAVS helped maintain the LPS-suppressed TLR4 mRNA level. MAVS regulated redox homeostasis via NADPH oxidase Nox2 and mitochondrial reverse electron transport in macrophages to alleviate the TLR4 signaling response to LPS. Hypoxia-inducible factor 1α (HIF-1α) and AP-1 were key regulators of TLR4 transcription and connected MAVS-dependent reactive oxygen species signaling with the TLR4 pathway. Inhibition of succinate dehydrogenase could partly reduce inflammation in LPS-treated bone marrow-derived macrophages without MAVS. These findings highlight the renoprotective role of MAVS in LPS-induced AKI by regulating reactive oxygen species generation-related genes and maintaining redox balance. Controlling redox homeostasis through MAVS signaling may be a promising therapy for SA-AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Animais , Camundongos , Lipopolissacarídeos , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Sepse/metabolismo
3.
Arch Dermatol Res ; 303(6): 433-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21240511

RESUMO

The stratum corneum (SC) was taken from five atopic dogs by tape stripping (12 strips) of non-lesional areas of the abdomen. The free and protein-bound lipids were extracted and analyzed by thin-layer chromatography after fractionation on aminopropyl-bonded silica gel columns. A very frequent feature was the heterogeneity in the lipid content of consecutive layers. This was even more accentuated for the covalently bound lipids, with variations from one layer to another in the concentrations of cholesterol, omega hydroxylated ceramides and omega hydroxylated long-chain fatty acids. Among the free lipids, large amounts of glucosylceramides were present in canine atopic SC although they are nearly absent from the SC of normal dogs. A heterogeneous distribution of lipids was seen in canine atopic SC. These results suggest that strikingly deep variations occur in the lipid metabolism of keratinocytes in the skin of atopic dogs. In order to gain insight into this phenomenon, further studies should be focused on the activity of enzymes involved in both biosynthetic and catabolic processes.


Assuntos
Dermatite Atópica/metabolismo , Epiderme/metabolismo , Glucosilceramidas/análise , Animais , Colesterol/análise , Colesterol/química , Cromatografia em Camada Fina , Dermatite Atópica/imunologia , Cães , Epiderme/imunologia , Epiderme/patologia , Ácidos Graxos/análise , Ácidos Graxos/química , Glucosilceramidas/química , Hidroxilação , Metabolismo dos Lipídeos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA