Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(3): 691-6, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417115

RESUMO

Recently, it was reported that angiopoietin-like protein 8 (ANGPTL8) was the long-sought "betatrophin" that could control pancreatic beta cell proliferation. However, studies of Angptl8(?/?) mice revealed profound reduction of triglyceride levels, but no abnormalities in glucose homeostasis. We now report that Angptl8(?/?) mice undergo entirely normal beta cell expansion in response to insulin resistance resulting from either a high-fat diet or from the administration of the insulin receptor antagonist S961. Furthermore, overexpression of ANGPTL8 in livers of mice doubles plasma triglyceride levels, but does not alter beta cell expansion nor glucose metabolism. These data indicate that ANGPTL8 does not play a role in controlling beta cell growth, nor can it be given to induce such expansion. The findings that plasma triglyceride levels are reduced by Angptl8 deletion and increased following ANGPTL8 overexpression support the possibility that inhibition of ANGPTL8 represents a therapeutic strategy for hypertriglyceridemia.


Assuntos
Angiopoietinas/metabolismo , Células Secretoras de Insulina/citologia , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/genética , Animais , Dieta Hiperlipídica , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(6): e2312291121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294943

RESUMO

A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Aciltransferases , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Linhagem Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404721

RESUMO

The ABCG1 homodimer (G1) and ABCG5-ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Colesterol/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Conformação Proteica
4.
Liver Int ; 42(10): 2227-2236, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35620859

RESUMO

BACKGROUND AND AIMS: Susceptibility to fatty liver disease (FLD) varies among individuals and between racial/ethnic groups. Several genetic variants influence FLD risk, but whether these variants explain racial/ethnic differences in FLD prevalence is unclear. We examined the contribution of genetic risk factors to racial/ethnic-specific differences in FLD. METHODS: A case-control study comparing FLD patients (n = 1194) and population-based controls (n = 3120) was performed. Patient characteristics, FLD risk variants (PNPLA3-rs738409 + rs6006460, TM6SF2-rs58542926, HSD17B13-rs80182459 + rs72613567, MBOAT7/TMC4-rs641738, and GCKR-rs1260326) and a multi-locus genetic risk score (GRS) were examined. The odds of FLD for individuals with different risk factor burdens were determined. RESULTS: Hispanics and Whites were over-represented (56% vs. 38% and 36% vs. 29% respectively) and Blacks under-represented (5% vs. 23%) among FLD patients, compared to the population from which controls were selected (p < .001). Among cases and controls, Blacks had a lower and Hispanics a greater, net number of risk alleles than Whites (p < .001). GRS was associated with increased odds of FLD (ORQ5vsQ1  = 8.72 [95% CI = 5.97-13.0], p = 9.8 × 10-28 ), with the association being stronger in Hispanics (ORQ5vsQ1  = 14.8 [8.3-27.1]) than Blacks (ORQ5vsQ1  = 3.7 [1.5-11.5], P-interaction = 0.002). After accounting for GRS, the odds of FLD between Hispanics and Whites did not differ significantly (OR = 1.06 [0.87-1.28], p = .58), whereas Blacks retained much lower odds of FLD (OR = 0.21, [0.15-0.30], p < .001). CONCLUSIONS: Blacks had a lower and Hispanics a greater FLD risk allele burden than Whites. These differences contributed to, but did not fully explain, racial/ethnic differences in FLD prevalence. Identification of additional factors protecting Blacks from FLD may provide new targets for prevention and treatment of FLD.


Assuntos
Hepatopatias , Hepatopatia Gordurosa não Alcoólica , Alelos , Estudos de Casos e Controles , Etnicidade/genética , Predisposição Genética para Doença , Humanos , Hepatopatias/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
5.
Nature ; 533(7604): 561-4, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27144356

RESUMO

ATP binding cassette (ABC) transporters play critical roles in maintaining sterol balance in higher eukaryotes. The ABCG5/ABCG8 heterodimer (G5G8) mediates excretion of neutral sterols in liver and intestines. Mutations disrupting G5G8 cause sitosterolaemia, a disorder characterized by sterol accumulation and premature atherosclerosis. Here we use crystallization in lipid bilayers to determine the X-ray structure of human G5G8 in a nucleotide-free state at 3.9 Å resolution, generating the first atomic model of an ABC sterol transporter. The structure reveals a new transmembrane fold that is present in a large and functionally diverse superfamily of ABC transporters. The transmembrane domains are coupled to the nucleotide-binding sites by networks of interactions that differ between the active and inactive ATPases, reflecting the catalytic asymmetry of the transporter. The G5G8 structure provides a mechanistic framework for understanding sterol transport and the disruptive effects of mutations causing sitosterolaemia.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Lipoproteínas/química , Esteróis/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Hipercolesterolemia/genética , Enteropatias/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos , Fitosteróis/efeitos adversos , Fitosteróis/genética , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Proc Natl Acad Sci U S A ; 116(19): 9521-9526, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019090

RESUMO

Fatty liver disease (FLD) is a disorder in which accumulation of triglycerides (TGs) in the liver can lead to inflammation, fibrosis, and cirrhosis. Previously, we identified a variant (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) that is strongly associated with FLD, but the mechanistic basis for the association remains elusive. Although PNPLA3 has TG hydrolase activity in vitro, inactivation or overexpression of the WT protein in mice does not cause steatosis. In contrast, expression of two catalytically defective forms of PNPLA3 (I148M or S47A) in sucrose-fed mice causes accumulation of both PNPLA3 and TGs on hepatic lipid droplets (LDs). To determine if amassing PNPLA3 on LDs is a cause or consequence of steatosis, we engineered a synthetic isoform of PNPLA3 that uncouples protein accumulation from loss of enzymatic activity. Expression of a ubiquitylation-resistant form of PNPLA3 in mice caused accumulation of PNPLA3 on hepatic LDs and development of FLD. Lowering PNPLA3 levels by either shRNA knockdown or proteolysis-targeting chimera (PROTAC)-mediated degradation reduced liver TG content in mice overexpressing PNPLA3(148M). Taken together, our results show that the steatosis associated with PNPLA3(148M) is caused by accumulation of PNPLA3 on LDs.


Assuntos
Fígado Gorduroso/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Triglicerídeos/metabolismo , Animais , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Gotículas Lipídicas/patologia , Fígado/patologia , Camundongos , Camundongos Transgênicos , Fosfolipases A2 Independentes de Cálcio/genética , Sacarose/efeitos adversos , Sacarose/farmacologia , Triglicerídeos/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
7.
N Engl J Med ; 378(12): 1096-1106, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29562163

RESUMO

BACKGROUND: Elucidation of the genetic factors underlying chronic liver disease may reveal new therapeutic targets. METHODS: We used exome sequence data and electronic health records from 46,544 participants in the DiscovEHR human genetics study to identify genetic variants associated with serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Variants that were replicated in three additional cohorts (12,527 persons) were evaluated for association with clinical diagnoses of chronic liver disease in DiscovEHR study participants and two independent cohorts (total of 37,173 persons) and with histopathological severity of liver disease in 2391 human liver samples. RESULTS: A splice variant (rs72613567:TA) in HSD17B13, encoding the hepatic lipid droplet protein hydroxysteroid 17-beta dehydrogenase 13, was associated with reduced levels of ALT (P=4.2×10-12) and AST (P=6.2×10-10). Among DiscovEHR study participants, this variant was associated with a reduced risk of alcoholic liver disease (by 42% [95% confidence interval {CI}, 20 to 58] among heterozygotes and by 53% [95% CI, 3 to 77] among homozygotes), nonalcoholic liver disease (by 17% [95% CI, 8 to 25] among heterozygotes and by 30% [95% CI, 13 to 43] among homozygotes), alcoholic cirrhosis (by 42% [95% CI, 14 to 61] among heterozygotes and by 73% [95% CI, 15 to 91] among homozygotes), and nonalcoholic cirrhosis (by 26% [95% CI, 7 to 40] among heterozygotes and by 49% [95% CI, 15 to 69] among homozygotes). Associations were confirmed in two independent cohorts. The rs72613567:TA variant was associated with a reduced risk of nonalcoholic steatohepatitis, but not steatosis, in human liver samples. The rs72613567:TA variant mitigated liver injury associated with the risk-increasing PNPLA3 p.I148M allele and resulted in an unstable and truncated protein with reduced enzymatic activity. CONCLUSIONS: A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Fígado Gorduroso/genética , Predisposição Genética para Doença , Hepatopatias/genética , Mutação com Perda de Função , 17-Hidroxiesteroide Desidrogenases/metabolismo , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Doença Crônica , Progressão da Doença , Feminino , Variação Genética , Genótipo , Humanos , Modelos Lineares , Fígado/patologia , Hepatopatias/patologia , Masculino , Análise de Sequência de RNA , Sequenciamento do Exoma
8.
Proc Natl Acad Sci U S A ; 115(6): E1249-E1258, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358393

RESUMO

Dietary triglyceride (TG) is the most efficient energy substrate. It is processed and stored at substantially lower metabolic cost than is protein or carbohydrate. In fed animals, circulating TGs are preferentially routed for storage to white adipose tissue (WAT) by angiopoietin-like proteins 3 (A3) and 8 (A8). Here, we show that mice lacking A3 and A8 (A3-/-A8-/- mice) have decreased fat mass and a striking increase in temperature (+1 °C) in the fed (but not fasted) state, without alterations in food intake or physical activity. Subcutaneous WAT (WAT-SQ) from these animals had morphologic and metabolic changes characteristic of beiging. O2 consumption rates (OCRs) and expression of genes involved in both fatty acid synthesis and fatty acid oxidation were increased in WAT-SQ of A3-/-A8-/- mice, but not in their epididymal or brown adipose tissue (BAT). The hyperthermic response to feeding was blocked by maintaining A3-/-A8-/- mice at thermoneutrality or by treating with a ß3-adrenergic receptor (AR) antagonist. To determine if sympathetic stimulation was sufficient to increase body temperature in A3-/-A8-/- mice, WT and A3-/-A8-/- animals were maintained at thermoneutrality and then treated with a ß3-AR agonist; treatment induced hyperthermia in A3-/-A8-/- , but not WT, mice. Antibody-mediated inactivation of both circulating A3 and A8 induced hyperthermia in WT mice. Together, these data indicate that A3 and A8 are essential for efficient storage of dietary TG and that disruption of these genes increases feeding-induced thermogenesis and energy utilization.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas Semelhantes a Angiopoietina/fisiologia , Termogênese/fisiologia , Triglicerídeos/metabolismo , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Animais , Gorduras na Dieta , Feminino , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio , Receptores Adrenérgicos beta 3/metabolismo
9.
J Lipid Res ; 61(9): 1271-1286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646941

RESUMO

Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3's novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Proteína 3 Semelhante a Angiopoietina , Animais , Endotélio/metabolismo , Humanos , Camundongos , Receptores de LDL/metabolismo
11.
Hepatology ; 69(6): 2427-2441, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802989

RESUMO

A variant (148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a major risk factor for fatty liver disease. Despite its clinical importance, the pathogenic mechanism linking the variant to liver disease remains poorly defined. Previously, we showed that PNPLA3(148M) accumulates to high levels on hepatic lipid droplets (LDs). Here we examined the effect of that accumulation on triglyceride (TG) hydrolysis by adipose triglyceride lipase (ATGL), the major lipase in the liver. As expected, overexpression of ATGL in cultured hepatoma (HuH-7) cells depleted the cells of LDs, but unexpectedly, co-expression of PNPLA3(wild type [WT] or 148M) with ATGL inhibited that depletion. The inhibitory effect of PNPLA3 was not caused by the displacement of ATGL from LDs. We tested the hypothesis that PNPLA3 interferes with ATGL activity by interacting with its cofactor, comparative gene identification-58 (CGI-58). Evidence supporting such an interaction came from two findings. First, co-expression of PNPLA3 and CGI-58 resulted in LD depletion in cultured cells, but expression of PNPLA3 alone did not. Second, PNPLA3 failed to localize to hepatic LDs in liver-specific Cgi-58 knockout (KO) mice. Moreover, overexpression of PNPLA3(148M) increased hepatic TG levels in WT, but not in Cgi-58 KO mice. Thus, the pro-steatotic effects of PNPLA3 required the presence of CGI-58. Co-immunoprecipitation and pulldown experiments in livers of mice and in vitro using purified proteins provided evidence that PNPLA3 and CGI-58 can interact directly. Conclusion: Taken together, these findings are consistent with a model in which PNPLA3(148M) promotes steatosis by CGI-58-dependent inhibition of ATGL on LDs.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fosfolipases A2 Independentes de Cálcio/genética , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Hidrólise , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Distribuição Aleatória , Valores de Referência
12.
J Biol Chem ; 293(18): 6958-6968, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29555681

RESUMO

Fatty liver disease (FLD) is a burgeoning health problem. A missense variant (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) confers susceptibility to FLD, although the mechanism is not known. To glean first insights into the physiological function of PNPLA3, we performed detailed lipidomic profiling of liver lysates and lipid droplets (LDs) from WT and Pnpla3-/- (KO) mice and from knock-in (ki) mice expressing either the 148M variant (IM-ki mice) or a variant (S47A) that renders the protein catalytically inactive (SA-ki mice). The four strains differed in composition of very-long-chain polyunsaturated fatty acids (vLCPUFA) in hepatic LDs. In the LDs of IM-ki mice, vLCPUFAs were depleted from triglycerides and enriched in phospholipids. Conversely, vLCPUFAs were enriched in triglycerides and depleted from phospholipids in SA-ki and Pnpla3-/- mice. Release of vLCPUFAs from hepatic LDs incubated ex vivo was increased in droplets from IM-ki mice and decreased from droplets isolated from Pnpla3-/- and SA-ki mice relative to those of WT mice. Thus, the physiological role of PNPLA3 appears to be to remodel triglycerides and phospholipids in LDs, perhaps to accommodate changes in LD size in response to feeding. Because SA-ki and IM-ki both cause FLD and yet have opposite effects on the lipidomic profile of LDs, we conclude that the FLD associated with genetic variation in PNPLA3 is not related to the enzyme's role in remodeling LD lipids.


Assuntos
Ácidos Graxos Essenciais/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fosfolipases A2 Independentes de Cálcio/fisiologia , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , Animais , Catálise , Linhagem Celular , Ésteres do Colesterol/metabolismo , Sacarose Alimentar/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Vitamina A/metabolismo
13.
Hepatology ; 67(6): 2182-2195, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29266543

RESUMO

Genetic variation at rs4240624 on chromosome 8 is associated with an attenuated signal on hepatic computerized tomography, which has been attributed to changes in hepatic fat. The closest coding gene to rs4240624, PPP1R3B, encodes a protein that promotes hepatic glycogen synthesis. Here, we performed studies to determine whether the x-ray attenuation associated with rs4240624 is due to differences in hepatic glycogen or hepatic triglyceride content (HTGC). A sequence variant in complete linkage disequilibrium with rs4240624, rs4841132, was genotyped in the Dallas Heart Study (DHS), the Dallas Liver Study, and the Copenhagen Cohort (n = 112,428) of whom 1,539 had nonviral liver disease. The minor A-allele of rs4841132 was associated with increased hepatic x-ray attenuation (n = 1,572; P = 4 × 10-5 ), but not with HTGC (n = 2,674; P = 0.58). Rs4841132-A was associated with modest, but significant, elevations in serum alanine aminotransferase (ALT) in the Copenhagen Cohort (P = 3 × 10-4 ) and the DHS (P = 0.004), and with odds ratios for liver disease of 1.13 (95% CI, 0.97-1.31) and 1.23 (1.01-1.51), respectively. Mice lacking protein phosphatase 1 regulatory subunit 3B (PPP1R3B) were deficient in hepatic glycogen, whereas HTGC was unchanged. Hepatic overexpression of PPP1R3B caused accumulation of hepatic glycogen and elevated plasma levels of ALT, but did not change HTGC. CONCLUSION: These observations are consistent with the notion that the minor allele of rs4841132 promotes a mild form of hepatic glycogenosis that is associated with hepatic injury. (Hepatology 2018;67:2182-2195).


Assuntos
Glicogênio Hepático/análise , Fígado/química , Proteína Fosfatase 1/genética , Triglicerídeos/análise , Adulto , Idoso , Animais , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
14.
Hepatology ; 66(4): 1111-1124, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28520213

RESUMO

A sequence variation (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is strongly associated with fatty liver disease, but the underlying mechanism remains obscure. In this study, we used knock-in (KI) mice (Pnpla3148M/M ) to examine the mechanism responsible for accumulation of triglyceride (TG) and PNPLA3 in hepatic lipid droplets (LDs). No differences were found between Pnpla3148M/M and Pnpla3+/+ mice in hepatic TG synthesis, utilization, or secretion. These results are consistent with TG accumulation in the Pnpla3148M/M mice being caused by impaired TG mobilization from LDs. Sucrose feeding, which is required to elicit fatty liver in KI mice, led to a much larger and more persistent increase in PNPLA3 protein in the KI mice than in wild-type (WT) mice. Inhibition of the proteasome (bortezomib), but not macroautophagy (3-methyladenine), markedly increased PNPLA3 levels in WT mice, coincident with the appearance of ubiquitylated forms of the protein. Bortezomib did not increase PNPLA3 levels in Pnpla3148M/M mice, and only trace amounts of ubiquitylated PNPLA3 were seen in these animals. CONCLUSION: These results are consistent with the notion that the 148M variant disrupts ubiquitylation and proteasomal degradation of PNPLA3, resulting in accumulation of PNPLA3-148M and impaired mobilization of TG from LDs. (Hepatology 2017;66:1111-1124).


Assuntos
Fígado Gorduroso/genética , Gotículas Lipídicas/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Adenina/análogos & derivados , Animais , Restrição Calórica , Sacarose Alimentar , Fígado Gorduroso/metabolismo , Predisposição Genética para Doença , Metabolismo dos Lipídeos , Camundongos Transgênicos , Oxirredução , Fosfolipases A2 Independentes de Cálcio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Triglicerídeos/metabolismo , Ubiquitinação
15.
Proc Natl Acad Sci U S A ; 112(37): 11630-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26305978

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3(-/-) mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3(-/-) animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3(-/-) mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target.


Assuntos
Tecido Adiposo Branco/metabolismo , Angiopoietinas/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Glicemia/metabolismo , Composição Corporal , AMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , Feminino , Homeostase , Hormônios/metabolismo , Insulina/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Distribuição Tecidual , Triglicerídeos/metabolismo
16.
J Lipid Res ; 58(6): 1166-1173, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28413163

RESUMO

Angiopoietin-like (ANGPTL)3 and ANGPTL8 are secreted proteins and inhibitors of LPL-mediated plasma triglyceride (TG) clearance. It is unclear how these two ANGPTL proteins interact to regulate LPL activity. ANGPTL3 inhibits LPL activity and increases serum TG independent of ANGPTL8. These effects are reversed with an ANGPTL3 blocking antibody. Here, we show that ANGPTL8, although it possesses a functional inhibitory motif, is inactive by itself and requires ANGPTL3 expression to inhibit LPL and increase plasma TG. Using a mutated form of ANGPTL3 that lacks LPL inhibitory activity, we demonstrate that ANGPTL3 activity is not required for its ability to activate ANGPTL8. Moreover, coexpression of ANGPTL3 and ANGPTL8 leads to a far more efficacious increase in TG in mice than ANGPTL3 alone, suggesting the major inhibitory activity of this complex derives from ANGPTL8. An antibody to the C terminus of ANGPTL8 reversed LPL inhibition by ANGPTL8 in the presence of ANGPTL3. The antibody did not disrupt the ANGPTL8:ANGPTL3 complex, but came in close proximity to the LPL inhibitory motif in the N terminus of ANGPTL8. Collectively, these data show that ANGPTL8 has a functional LPL inhibitory motif, but only inhibits LPL and increases plasma TG levels in mice in the presence of ANGPTL3.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/antagonistas & inibidores , Hormônios Peptídicos/metabolismo , Triglicerídeos/sangue , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/deficiência , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/metabolismo , Camundongos , Hormônios Peptídicos/química , Hormônios Peptídicos/deficiência
17.
J Biol Chem ; 291(20): 10659-76, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27013658

RESUMO

A missense mutation (E167K) in TM6SF2 (transmembrane 6 superfamily member 2), a polytopic protein of unknown function, is associated with the full spectrum of fatty liver disease. To investigate the role of TM6SF2 in hepatic triglyceride (TG) metabolism, we inactivated the gene in mice. Chronic inactivation of Tm6sf2 in mice is associated with hepatic steatosis, hypocholesterolemia, and transaminitis, thus recapitulating the phenotype observed in humans. No dietary challenge was required to elicit the phenotype. Immunocytochemical and cell fractionation studies revealed that TM6SF2 was present in the endoplasmic reticulum and Golgi complex, whereas the excess neutral lipids in the Tm6sf2(-/-) mice were located in lipid droplets. Plasma VLDL-TG levels were reduced in the KO animals due to a 3-fold decrease in VLDL-TG secretion rate without any associated reduction in hepatic apoB secretion. Both VLDL particle size and plasma cholesterol levels were significantly reduced in KO mice. Despite levels of TM6SF2 protein being 10-fold higher in the small intestine than in the liver, dietary lipid absorption was only modestly reduced in the KO mice. Our data, taken together, reveal that TM6SF2 is required to mobilize neutral lipids for VLDL assembly but is not required for secretion of apoB-containing lipoproteins. Despite TM6SF2 being located in the endoplasmic reticulum and Golgi complex, the lipids that accumulate in its absence reside in lipid droplets.


Assuntos
Fígado Gorduroso/metabolismo , Lipoproteínas VLDL/metabolismo , Lipoilação , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Triglicerídeos/metabolismo , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Triglicerídeos/genética
19.
Hepatology ; 61(1): 108-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24917523

RESUMO

UNLABELLED: A sequence polymorphism (rs738409, I148M) in patatin-like phospholipid domain containing protein 3 (PNPLA3) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild-type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high-sucrose diet their liver fat levels increased 2 to 3-fold compared to wild-type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40-fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). CONCLUSION: These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver.


Assuntos
Fígado Gorduroso/etiologia , Lipase/genética , Proteínas de Membrana/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Resistência à Insulina , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sacarose
20.
Proc Natl Acad Sci U S A ; 110(40): 16109-14, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043787

RESUMO

Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.


Assuntos
Dislipidemias/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Hormônios Peptídicos/deficiência , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Transporte Biológico/fisiologia , Calorimetria Indireta , VLDL-Colesterol/sangue , Dislipidemias/tratamento farmacológico , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônios Peptídicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA