Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
EMBO J ; 43(5): 836-867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332377

RESUMO

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR). Here, we use cryoelectron microscopy to show that the Hop1 CBR directly recognizes bent nucleosomal DNA through a composite interface in its PHD and winged helix-turn-helix domains. Targeted disruption of the Hop1 CBR-nucleosome interface causes a localized reduction of axis protein binding and meiotic DNA double-strand breaks (DSBs) in axis islands and leads to defects in chromosome synapsis. Synthetic effects with mutants of the Hop1 regulator Pch2 suggest that nucleosome binding delays a conformational switch in Hop1 from a DSB-promoting, Pch2-inaccessible state to a DSB-inactive, Pch2-accessible state to regulate the extent of meiotic DSB formation. Phylogenetic analyses of meiotic HORMADs reveal an ancient origin of the CBR, suggesting that the mechanisms we uncover are broadly conserved.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae , Nucleossomos , Microscopia Crioeletrônica , Filogenia , Saccharomyces cerevisiae/genética , DNA , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell ; 144(5): 719-31, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376234

RESUMO

The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Estudo de Associação Genômica Ampla , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 72(3): 583-593.e4, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293780

RESUMO

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.


Assuntos
Variações do Número de Cópias de DNA/fisiologia , DNA Circular/fisiologia , DNA Ribossômico/fisiologia , Variações do Número de Cópias de DNA/genética , Replicação do DNA/fisiologia , DNA Circular/genética , DNA Circular/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/fisiologia , Genômica , RNA Ribossômico/genética , Recombinação Genética/genética , Ribossomos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Nucleic Acids Res ; 50(8): 4545-4556, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412621

RESUMO

Successful meiotic recombination, and thus fertility, depends on conserved axis proteins that organize chromosomes into arrays of anchored chromatin loops and provide a protected environment for DNA exchange. Here, we show that the stereotypic chromosomal distribution of axis proteins in Saccharomyces cerevisiae is the additive result of two independent pathways: a cohesin-dependent pathway, which was previously identified and mediates focal enrichment of axis proteins at gene ends, and a parallel cohesin-independent pathway that recruits axis proteins to broad genomic islands with high gene density. These islands exhibit elevated markers of crossover recombination as well as increased nucleosome density, which we show is a direct consequence of the underlying DNA sequence. A predicted PHD domain in the center of the axis factor Hop1 specifically mediates cohesin-independent axis recruitment. Intriguingly, other chromosome organizers, including cohesin, condensin, and topoisomerases, are differentially depleted from the same regions even in non-meiotic cells, indicating that these DNA sequence-defined chromatin islands exert a general influence on the patterning of chromosome structure.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Meiose/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 36(17): 2488-2509, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694245

RESUMO

The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4-dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo-like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4-Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double-strand breaks. Taken together, we propose that the concerted action of DDK, Polo-like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Meiose/fisiologia , Proteínas Quinases/metabolismo , Complexo Sinaptonêmico/metabolismo , Fosforilação , Saccharomycetales/metabolismo
6.
PLoS Genet ; 13(7): e1006928, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28746375

RESUMO

Meiotic chromosomes assemble characteristic "axial element" structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20-25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response.


Assuntos
Dosagem de Genes/genética , Meiose/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Pareamento Cromossômico , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Mutação , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Complexo Sinaptonêmico/genética
7.
BMC Genomics ; 20(1): 54, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654749

RESUMO

BACKGROUND: Chromatin-immunoprecipitation followed by sequencing (ChIP-seq) is the method of choice for mapping genome-wide binding of chromatin-associated factors. However, broadly applicable methods for between-sample comparisons are lacking. RESULTS: Here, we introduce SNP-ChIP, a method that leverages small-scale intra-species polymorphisms, mainly SNPs, for quantitative spike-in normalization of ChIP-seq results. Sourcing spike-in material from the same species ensures antibody cross-reactivity and physiological coherence, thereby eliminating two central limitations of traditional spike-in approaches. We show that SNP-ChIP is robust to changes in sequencing depth and spike-in proportions, and reliably identifies changes in overall protein levels, irrespective of changes in binding distribution. Application of SNP-ChIP to test cases from budding yeast meiosis allowed discovery of novel regulators of the chromosomal protein Red1 and quantitative analysis of the DNA-damage associated histone modification γ-H2AX. CONCLUSION: SNP-ChIP is fully compatible with the intra-species diversity of humans and most model organisms and thus offers a general method for normalizing ChIP-seq results.


Assuntos
Imunoprecipitação da Cromatina/métodos , Genoma Fúngico , Polimorfismo de Nucleotídeo Único/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mutação/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Coesinas
8.
Curr Genet ; 65(2): 407-415, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30361853

RESUMO

Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Divisão Celular/genética , Montagem e Desmontagem da Cromatina , DNA Ribossômico/genética , Regulação da Expressão Gênica , Loci Gênicos , Genoma , Humanos , Interfase/genética , RNA de Transferência , Transcrição Gênica
9.
PLoS Biol ; 14(2): e1002369, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26870961

RESUMO

Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression.


Assuntos
Pareamento Cromossômico , Reparo do DNA , MAP Quinase Quinase 1/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Meiose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
PLoS Genet ; 11(6): e1005335, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114667

RESUMO

Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.


Assuntos
Troca Genética , Proteínas Fúngicas/genética , Kluyveromyces/genética , Meiose , Sequência de Aminoácidos , Sequência de Bases , Centrômero/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
11.
Nature ; 477(7362): 115-9, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21822291

RESUMO

DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, owing to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination. In the repetitive ribosomal DNA (rDNA) array of the budding yeast Saccharomyces cerevisiae, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin formation. Here we show that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity in the rDNA array. We find that this localized DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination increased specifically in the outermost rDNA repeats, leading to NAHR and rDNA instability. Notably, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2Δ cells. Thus, although the activity of Sir2 globally prevents meiotic DSBs in the rDNA, it creates a highly permissive environment for DSB formation at the junctions between heterochromatin and euchromatin. Heterochromatinized repetitive DNA arrays are abundant in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, the protection of which may be a universal requirement to prevent meiotic genome rearrangements that are associated with genomic diseases and birth defects.


Assuntos
Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Instabilidade Cromossômica/genética , Quebras de DNA de Cadeia Dupla , DNA Ribossômico/genética , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
PLoS Genet ; 9(12): e1004071, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385939

RESUMO

During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Recombinação Homóloga/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Centrômero , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Complexos Multiproteicos/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
13.
Exp Cell Res ; 329(1): 53-60, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25158281

RESUMO

Meiotic recombination has two key functions: the faithful assortment of chromosomes into gametes and the creation of genetic diversity. Both processes require that meiotic recombination occurs between homologous chromosomes, rather than sister chromatids. Accordingly, a host of regulatory factors are activated during meiosis to distinguish sisters from homologs, suppress recombination between sister chromatids and promote the chromatids of the homologous chromosome as the preferred recombination partners. Here, we discuss the recent advances in our understanding of the mechanistic basis of meiotic recombination template choice, focusing primarily on developments in the budding yeast, Saccharomyces cerevisiae, where the regulation is currently best understood.


Assuntos
Reparo do DNA/genética , Meiose/genética , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã/genética
14.
PLoS Genet ; 8(5): e1002643, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615576

RESUMO

The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.


Assuntos
Cromossomos , Replicação do DNA , Recombinação Genética , Fase S , Saccharomyces cerevisiae/genética , Sítios de Ligação , Centrômero/genética , Proteínas Cromossômicas não Histona , Quebra Cromossômica , Replicação do DNA/genética , Proteínas de Ligação a DNA , Genoma Fúngico , Meiose/genética , Mitose/genética , Origem de Replicação/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae
15.
PLoS Genet ; 8(6): e1002732, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685417

RESUMO

For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic prophase are committed to complete sporulation even if nutrients are restored. Here, we have identified an earlier commitment point in the starvation program. After this point, cells, returned to nutrient-rich medium, entered a form of synchronous PH development that was morphologically and genetically indistinguishable from starvation-induced PH growth. We show that lineage restriction during this time was, in part, dependent on the mRNA methyltransferase activity of Ime4, which played separable roles in meiotic induction and suppression of the PH program. Normal levels of meiotic mRNA methylation required the catalytic domain of Ime4, as well as two meiotic proteins, Mum2 and Slz1, which interacted and co-immunoprecipitated with Ime4. This MIS complex (Mum2, Ime4, and Slz1) functioned in both starvation pathways. Together, our results support the notion that the yeast starvation response is an extended process that progressively restricts cell fate and reveal a broad role of post-transcriptional RNA methylation in these decisions.


Assuntos
Proteínas de Ciclo Celular , Metilação , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , tRNA Metiltransferases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Meiose/genética , Fenômenos Fisiológicos da Nutrição/genética , Fenômenos Fisiológicos da Nutrição/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
16.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37616582

RESUMO

Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.


Assuntos
Recombinação Genética , Saccharomycetales , Saccharomycetales/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Complexo Sinaptonêmico
17.
Cell Genom ; 3(11): 100439, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020967

RESUMO

We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.

18.
Nat Commun ; 13(1): 7245, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434003

RESUMO

Ribosome biogenesis in eukaryotes is supported by hundreds of ribosomal RNA (rRNA) gene copies that are encoded in the ribosomal DNA (rDNA). The multiple copies of rRNA genes are thought to have low sequence diversity within one species. Here, we present species-wide rDNA sequence analysis in Saccharomyces cerevisiae that challenges this view. We show that rDNA copies in this yeast are heterogeneous, both among and within isolates, and that many variants avoided fixation or elimination over evolutionary time. The sequence diversity landscape across the rDNA shows clear functional stratification, suggesting different copy-number thresholds for selection that contribute to rDNA diversity. Notably, nucleotide variants in the most conserved rDNA regions are sufficiently deleterious to exhibit signatures of purifying selection even when present in only a small fraction of rRNA gene copies. Our results portray a complex evolutionary landscape that shapes rDNA sequence diversity within a single species and reveal unexpectedly strong purifying selection of multi-copy genes.


Assuntos
Evolução Biológica , Genes de RNAr/genética , DNA Ribossômico/genética , Análise de Sequência de DNA
19.
Life Sci Alliance ; 5(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36271494

RESUMO

Meiotic cells introduce a numerous programmed DNA breaks into their genome to stimulate meiotic recombination and ensure controlled chromosome inheritance and fertility. A checkpoint network involving key kinases and phosphatases coordinates the repair of these DNA breaks, but the precise phosphorylation targets remain poorly understood. It is also unknown whether meiotic DNA breaks change gene expression akin to the canonical DNA-damage response. To address these questions, we analyzed the meiotic DNA break response in Saccharomyces cerevisiae using multiple systems-level approaches. We identified 332 DNA break-dependent phosphorylation sites, vastly expanding the number of known events during meiotic prophase. Less than half of these events occurred in recognition motifs for the known meiotic checkpoint kinases Mec1 (ATR), Tel1 (ATM), and Mek1 (CHK2), suggesting that additional kinases contribute to the meiotic DNA-break response. We detected a clear transcriptional program but detected only very few changes in protein levels. We attribute this dichotomy to a decrease in transcript levels after meiotic entry that dampens the effects of break-induced transcription sufficiently to cause only minimal changes in the meiotic proteome.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular/genética , Proteoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
20.
Front Cell Dev Biol ; 9: 667073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928091

RESUMO

Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA