Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794008

RESUMO

Analysis of allele-specific gene expression (ASE) is a powerful approach for studying gene regulation, particularly when sample sizes are small, such as for rare diseases, or when studying the effects of rare genetic variation. However, detection of ASE events relies on accurate alignment of RNA sequencing reads, where challenges still remain, particularly for reads containing genetic variants or those that align to many different genomic locations. We have developed the Personalised ASE Caller (PAC), a tool that combines multiple steps to improve the quantification of allelic reads, including personalized (i.e., diploid) read alignment with improved allocation of multimapping reads. Using simulated RNA sequencing data, we show that PAC outperforms standard alignment approaches for ASE detection, reducing the number of sites with incorrect biases (>10%) by ∼80% and increasing the number of sites that can be reliably quantified by ∼3%. Applying PAC to real RNA sequencing data from 670 whole-blood samples, we show that genetic regulatory signatures inferred from ASE data more closely match those from population-based methods that are less prone to alignment biases. Finally, we use PAC to characterize cell type-specific ASE events that would be missed by standard alignment approaches, and in doing so identify disease relevant genes that may modulate their effects through the regulation of gene expression. PAC can be applied to the vast quantity of existing RNA sequencing data sets to better understand a wide array of fundamental biological and disease processes.

2.
BMC Biol ; 20(1): 168, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869520

RESUMO

BACKGROUND: The human mitochondrial genome is transcribed as long strands of RNA containing multiple genes, which require post-transcriptional cleavage and processing to release functional gene products that play vital roles in cellular energy production. Despite knowledge implicating mitochondrial post-transcriptional processes in pathologies such as cancer, cardiovascular disease and diabetes, very little is known about the way their function varies on a human population level and what drives changes in these processes to ultimately influence disease risk. Here, we develop a method to detect and quantify mitochondrial RNA cleavage events from standard RNA sequencing data and apply this approach to human whole blood data from > 1000 samples across independent cohorts. RESULTS: We detect 54 putative mitochondrial RNA cleavage sites that not only map to known gene boundaries, short RNA ends and RNA modification sites, but also occur at internal gene positions, suggesting novel mitochondrial RNA cleavage junctions. Inferred RNA cleavage rates correlate with mitochondrial-encoded gene expression across individuals, suggesting an impact on downstream processes. Furthermore, by comparing inferred cleavage rates to nuclear genetic variation and gene expression, we implicate multiple genes in modulating mitochondrial RNA cleavage (e.g. MRPP3, TBRG4 and FASTKD5), including a potentially novel role for RPS19 in influencing cleavage rates at a site near to the MTATP6-COX3 junction that we validate using shRNA knock down data. CONCLUSIONS: We identify novel cleavage junctions associated with mitochondrial RNA processing, as well as genes newly implicated in these processes, and detect the potential impact of variation in cleavage rates on downstream phenotypes and disease processes. These results highlight the complexity of the mitochondrial transcriptome and point to novel mechanisms through which nuclear-encoded genes can potentially influence key mitochondrial processes.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , Humanos , RNA/genética , RNA/metabolismo , Clivagem do RNA , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Análise de Sequência de RNA
3.
Nat Rev Genet ; 12(11): 756-66, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21969038

RESUMO

It has been known for many years that the mutation rate varies across the genome. However, only with the advent of large genomic data sets is the full extent of this variation becoming apparent. The mutation rate varies over many different scales, from adjacent sites to whole chromosomes, with the strongest variation seen at the smallest scales. Some of these patterns have clear mechanistic bases, but much of the rate variation remains unexplained, and some of it is deeply perplexing. Variation in the mutation rate has important implications in evolutionary biology and underexplored implications for our understanding of hereditary disease and cancer.


Assuntos
Ilhas de CpG , Mamíferos/genética , Taxa de Mutação , Animais , Humanos , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais
4.
BMC Bioinformatics ; 17(1): 364, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27618913

RESUMO

BACKGROUND: Allele specific expression (ASE) has become an important phenotype, being utilized for the detection of cis-regulatory variation, nonsense mediated decay and imprinting in the personal genome, and has been used to both identify disease loci and consider the penetrance of damaging alleles. The detection of ASE using high throughput technologies relies on aligning short-read sequencing data, a process that has inherent biases, and there is still a need to develop fast and accurate methods to detect ASE given the unprecedented growth of sequencing information in big data projects. RESULTS: Here, we present a new approach to normalize RNA sequencing data in order to call ASE events with high precision in a short time-frame. Using simulated datasets we find that our approach dramatically improves reference allele quantification at heterozygous sites versus default mapping methods and also performs well compared to existing techniques for ASE detection, such as filtering methods and mapping to parental genomes, without the need for complex and time consuming manipulation. Finally, by sequencing the exomes and transcriptomes of 96 well-phenotyped individuals of the CARTaGENE cohort, we characterise the levels of ASE across individuals and find a significant association between the proportion of sites undergoing ASE within the genome and smoking. CONCLUSIONS: The correct treatment and analysis of RNA sequencing data is vital to control for mapping biases and detect genuine ASE signals. By normalising RNA sequencing information after mapping, we show that this approach can be used to identify biologically relevant signals in personal genomes.


Assuntos
Perfilação da Expressão Gênica/métodos , Haplótipos/genética , Alelos , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/métodos
5.
EMBO Rep ; 15(7): 766-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928908

RESUMO

The KCC2 cotransporter establishes the low neuronal Cl(-) levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl(-)-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EG ly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE.


Assuntos
Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Simportadores/genética , Simportadores/metabolismo , Potenciais de Ação , Alelos , Animais , Estudos de Casos e Controles , Linhagem Celular , Cloretos/metabolismo , Frequência do Gene , Variação Genética , Hipocampo/metabolismo , Humanos , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Quebeque , Ratos , Simportadores/química , Cotransportadores de K e Cl-
6.
PLoS Genet ; 9(9): e1003815, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086152

RESUMO

Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.


Assuntos
Suscetibilidade a Doenças , Exoma/genética , Mutação , Análise de Sequência de DNA/métodos , Canadá , Demografia , França , Frequência do Gene , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genética
7.
J Med Genet ; 50(5): 324-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423984

RESUMO

BACKGROUND: Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. METHODS: We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. RESULTS: Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. CONCLUSIONS: Based on our genetic results, TTC7A is the likely causal gene for MIA.


Assuntos
Etnicidade/genética , Exoma/genética , Atresia Intestinal/genética , Proteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Homozigoto , Humanos , Atresia Intestinal/etnologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Quebeque , Alinhamento de Sequência , Análise de Sequência de DNA
8.
BMC Genomics ; 14: 495, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23875710

RESUMO

BACKGROUND: Regions of the genome that are under evolutionary constraint across multiple species have previously been used to identify functional sequences in the human genome. Furthermore, it is known that there is an inverse relationship between evolutionary constraint and the allele frequency of a mutation segregating in human populations, implying a direct relationship between interspecies divergence and fitness in humans. Here we utilise this relationship to test differences in the accumulation of putatively deleterious mutations both between populations and on the individual level. RESULTS: Using whole genome and exome sequencing data from Phase 1 of the 1000 Genome Project for 1,092 individuals from 14 worldwide populations we show that minor allele frequency (MAF) varies as a function of constraint around both coding regions and non-coding sites genome-wide, implying that negative, rather than positive, selection primarily drives the distribution of alleles among individuals via background selection. We find a strong relationship between effective population size and the depth of depression in MAF around the most conserved genes, suggesting that populations with smaller effective size are carrying more deleterious mutations, which also translates into higher genetic load when considering the number of putatively deleterious alleles segregating within each population. Finally, given the extreme richness of the data, we are now able to classify individual genomes by the accumulation of mutations at functional sites using high coverage 1000 Genomes data. Using this approach we detect differences between 'healthy' individuals within populations for the distributions of putatively deleterious rare alleles they are carrying. CONCLUSIONS: These findings demonstrate the extent of background selection in the human genome and highlight the role of population history in shaping patterns of diversity between human individuals. Furthermore, we provide a framework for the utility of personal genomic data for the study of genetic fitness and diseases.


Assuntos
Evolução Molecular , Genômica , Taxa de Mutação , Seleção Genética , Exoma/genética , Frequência do Gene , Humanos
9.
GigaByte ; 2023: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732134

RESUMO

We present ensemblQueryR, an R package for querying Ensembl linkage disequilibrium (LD) endpoints. This package is flexible, fast and user-friendly, and optimised for high-throughput querying. ensemblQueryR uses functions that are intuitive and amenable to custom code integration, familiar R object types as inputs and outputs as well as providing parallelisation functionality. For each Ensembl LD endpoint, ensemblQueryR provides two functions, permitting both single- and multi-query modes of operation. The multi-query functions are optimised for large query sizes and provide optional parallelisation to leverage available computational resources and minimise processing time. We demonstrate improved computational performance of ensemblQueryR over an exisiting tool in terms of random access memory (RAM) usage and speed, delivering a 10-fold speed increase whilst using a third of the RAM. Finally, ensemblQueryR is near-agnostic to operating system and computational architecture through Docker and singularity images, making this tool widely accessible to the scientific community.

10.
Hum Mutat ; 33(1): 136-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21953857

RESUMO

Recently, the genome sequences from several cancers have been published, along with the genome from a noncancer tissue from the same individual, allowing the identification of new somatic mutations in the cancer. We show that there is significant variation in the density of mutations at the 1-Mb scale within three cancer genomes and that the density of mutations is correlated between them. We also demonstrate that the density of mutations is correlated to that in the germline, as measured by the divergence between humans and chimpanzees and humans and macaques. We show that the density of mutations is correlated to the guanine and cytosine (GC) conent, replication time, distance to telomere and centromere, gene density, and nucleosome occupancy in the cancer genomes. However, overall, all factors explain less than 40% of the variance in mutation density and each factor explains very little of the variance. We find that genes associated with cancer occupy regions of the genome with significantly lower mutation rates than the average. Finally, we show that the density of mutations varies at a 10-Mb and a chromosomal scale, but that the variation at these scales is weak.


Assuntos
Genoma Humano , Mutação em Linhagem Germinativa , Neoplasias Pulmonares/genética , Macaca/genética , Pan troglodytes/genética , Neoplasias Cutâneas/genética , Animais , Composição de Bases , Mapeamento Cromossômico , Variação Genética , Humanos , Taxa de Mutação , Nucleossomos/genética , Nucleossomos/metabolismo
11.
PLoS Biol ; 7(2): e1000027, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19192947

RESUMO

The mutation rate is known to vary between adjacent sites within the human genome as a consequence of context, the most well-studied example being the influence of CpG dinucelotides. We investigated whether there is additional variation by testing whether there is an excess of sites at which both humans and chimpanzees have a single-nucleotide polymorphism (SNP). We found a highly significant excess of such sites, and we demonstrated that this excess is not due to neighbouring nucleotide effects, ancestral polymorphism, or natural selection. We therefore infer that there is cryptic variation in the mutation rate. However, although this variation in the mutation rate is not associated with the adjacent nucleotides, we show that there are highly nonrandom patterns of nucleotides that extend approximately 80 base pairs on either side of sites with coincident SNPs, suggesting that there are extensive and complex context effects. Finally, we estimate the level of variation needed to produce the excess of coincident SNPs and show that there is a similar, or higher, level of variation in the mutation rate associated with this cryptic process than there is associated with adjacent nucleotides, including the CpG effect. We conclude that there is substantial variation in the mutation that has, until now, been hidden from view.


Assuntos
Genoma Humano , Mutação , Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Animais , Pareamento de Bases , Evolução Molecular , Variação Genética , Humanos , Pan troglodytes/genética , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Genome Biol ; 23(1): 54, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164830

RESUMO

BACKGROUND: Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. RESULTS: Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. CONCLUSIONS: Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases.


Assuntos
Metilação de DNA , RNA Ribossômico , Animais , DNA Ribossômico/genética , Epigênese Genética , Variação Genética , Humanos , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
13.
Commun Biol ; 4(1): 1262, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737414

RESUMO

Mitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases. The mitochondrial genome encodes core respiratory chain proteins, but the vast majority of mitochondrial proteins are nuclear-encoded, making interactions between the two genomes vital for cell function. Here, we examine these relationships by comparing mitochondrial and nuclear gene expression across different regions of the human brain in healthy and disease cohorts. We find strong regional patterns that are modulated by cell-type and reflect functional specialisation. Nuclear genes causally implicated in sporadic Parkinson's and Alzheimer's disease (AD) show much stronger relationships with the mitochondrial genome than expected by chance, and mitochondrial-nuclear relationships are highly perturbed in AD cases, particularly through synaptic and lysosomal pathways, potentially implicating the regulation of energy balance and removal of dysfunction mitochondria in the etiology or progression of the disease. Finally, we present MitoNuclearCOEXPlorer, a tool to interrogate key mitochondria-nuclear relationships in multi-dimensional brain data.


Assuntos
Encéfalo/fisiopatologia , Núcleo Celular/fisiologia , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Humanos , Análise de Sequência de RNA , Transdução de Sinais
14.
Commun Biol ; 3(1): 147, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221480

RESUMO

RNA modifications affect the stability and function of RNA species, regulating important downstream processes. Modification levels are often dynamic, varying between tissues and individuals, although it is not always clear what modulates this or what impact it has on biological systems. Here, we quantify variation in m1A/G RNA modification levels at functionally important positions in the human mitochondrial genome across 11,552 samples from 39 tissue/cell types and find that modification levels are associated with mitochondrial transcript processing. We identify links between mitochondrial RNA modification levels and genetic variants in the nuclear genome, including a missense mutation in LONP1, and find that genetic variants within MRPP3 and TRMT61B are associated with RNA modification levels across a large number of tissues. Genetic variants linked to RNA modification levels are associated with multiple disease/disease-related phenotypes, including blood pressure, breast cancer and psoriasis, suggesting a role for mitochondrial RNA modification in complex disease.


Assuntos
Adenosina/análogos & derivados , Núcleo Celular/genética , Guanina/análogos & derivados , Mitocôndrias/genética , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/genética , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Guanina/metabolismo , Humanos , Metilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Mitocondrial/metabolismo , RNA-Seq , Ribonuclease P/genética , Ribonuclease P/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
15.
Nat Commun ; 11(1): 5469, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122634

RESUMO

Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.


Assuntos
Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Deficiência Intelectual/genética , Mitocôndrias/metabolismo , Dedos de Zinco/genética , Animais , Linhagem Celular , DNA Mitocondrial , Complexo I de Transporte de Elétrons/biossíntese , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Deficiência Intelectual/etiologia , Camundongos , Mutação/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
16.
Elife ; 82019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30775970

RESUMO

Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.


Assuntos
Núcleo Celular/genética , Regulação da Expressão Gênica , Mitocôndrias/genética , Transcriptoma/genética , Bases de Dados Genéticas , Doença/genética , Genes Mitocondriais , Humanos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
17.
Nat Commun ; 9(1): 827, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511166

RESUMO

Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual's response to environmental challenges.


Assuntos
Interação Gene-Ambiente , Adulto , Idoso , Poluição do Ar , Exposição Ambiental , França/etnologia , Expressão Gênica , Fluxo Gênico , Humanos , Pessoa de Meia-Idade , Penetrância , Polimorfismo Genético , Locos de Características Quantitativas , Quebeque , Transcriptoma
18.
Genetics ; 208(2): 763-777, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187508

RESUMO

Humans have colonized the planet through a series of range expansions, which deeply impacted genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians who colonized Quebec in the 17th century. We used historical information and records from ∼4000 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity reveals that: (i) both new and low-frequency variants are significantly more deleterious in front than in core individuals, (ii) equally deleterious mutations are at higher frequencies in front individuals, and (iii) front individuals are two times more likely to be homozygous for rare very deleterious mutations present in Europeans. These differences have emerged in the past six to nine generations and cannot be explained by differential inbreeding, but are consistent with relaxed selection mainly due to higher rates of genetic drift on the wave front. Demographic inference and modeling of the evolution of rare variants suggest lower effective size on the front, and lead to an estimation of selection coefficients that increase with conservation scores. Even though range expansions have had a relatively limited impact on the overall fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in recently settled regions of Quebec.


Assuntos
Genética Populacional , Modelos Genéticos , Seleção Genética , Algoritmos , Alelos , Evolução Biológica , Simulação por Computador , Demografia , Evolução Molecular , Frequência do Gene , Ontologia Genética , Aptidão Genética , Variação Genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Quebeque
19.
Aust Health Rev ; 31(3): 379-84, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17669060

RESUMO

The Master of Health Administration program at UNSW was extensively revised in 2006 to ensure that it effectively meets the challenging and dynamic environment of health service managers in local and global health contexts. This paper describes the innovative approach to the redesign of the health management program within the Faculty of Medicine. It outlines the method and considerations undertaken, particularly in identifying and embedding new graduate capabilities within the program. The paper concludes that using an outcomes-based approach and engaging with key stakeholders provides opportunity to identify and promote critical capabilities needed by managers to support the challenges confronting health services, including workforce flexibility. Further research is required on how such curriculum initiatives might impact on the performance of health service managers, but initial indications are that the health industry recognises the need and value of this approach.


Assuntos
Currículo/normas , Educação de Pós-Graduação , Administradores de Instituições de Saúde/educação , Administração de Serviços de Saúde , Competência Profissional , Administradores de Instituições de Saúde/normas , Humanos , New South Wales , Inovação Organizacional , Escolas para Profissionais de Saúde , Universidades
20.
Genome Med ; 9(1): 36, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420414

RESUMO

BACKGROUND: The mitochondrial genome is transcribed as continuous polycistrons of RNA containing multiple genes. As a consequence, post-transcriptional events are critical for the regulation of gene expression and therefore all aspects of mitochondrial function. One particularly important process is the m1A/m1G RNA methylation of the ninth position of different mitochondrial tRNAs, which allows efficient processing of mitochondrial mRNAs and protein translation, and de-regulation of genes involved in these processes has been associated with altered mitochondrial function. Although mitochondria play a key role in cancer, the status of mitochondrial RNA processing in tumorigenesis is unknown. METHODS: We measure and assess mitochondrial RNA processing using integrated genomic analysis of RNA sequencing and genotyping data from 1226 samples across 12 different cancer types. We focus on the levels of m1A and m1G RNA methylation in mitochondrial tRNAs in normal and tumor samples and use supervised and unsupervised statistical analysis to compare the levels of these modifications to patient whole genome genotypes, nuclear gene expression, and survival outcomes. RESULTS: We find significant changes to m1A and m1G RNA methylation levels in mitochondrial tRNAs in tumor tissues across all cancers. Pathways of RNA processing are strongly associated with methylation levels in normal tissues (P = 3.27 × 10-31), yet these associations are lost in tumors. Furthermore, we report 18 gene-by-disease-state interactions where altered RNA methylation levels occur under cancer status conditional on genotype, implicating genes associated with mitochondrial function or cancer (e.g., CACNA2D2, LMO2, and FLT3) and suggesting that nuclear genetic variation can potentially modulate an individual's ability to maintain unaltered rates of mitochondrial RNA processing under cancer status. Finally, we report a significant association between the magnitude of methylation level changes in tumors and patient survival outcomes. CONCLUSIONS: We report widespread variation of mitochondrial RNA processing between normal and tumor tissues across all cancer types investigated and show that these alterations are likely modulated by patient genotype and may impact patient survival outcomes. These results highlight the potential clinical relevance of altered mitochondrial RNA processing and provide broad new insights into the importance and complexity of these events in cancer.


Assuntos
Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/análise , Feminino , Técnicas de Genotipagem , Guanosina/análogos & derivados , Guanosina/análise , Humanos , Masculino , Metilação , Neoplasias/metabolismo , RNA Mitocondrial , RNA Neoplásico/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA