Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brief Bioinform ; 19(4): 656-678, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28200013

RESUMO

Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new opportunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowledgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we present RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and annotated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs (25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemical features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, functional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is developed as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiological principles of drug repositioning identified from the meta-analyses could augment therapeutic development.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Doença , Descoberta de Drogas , Reposicionamento de Medicamentos , Proteínas/metabolismo , Humanos , Epidemiologia Molecular , Proteínas/genética
2.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 500-510, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934548

RESUMO

Rare diseases affect 10% of the first-world population, yet over 95% lack even a single pharmaceutical treatment. In the present age of information, we need ways to leverage our vast data and knowledge to streamline therapeutic development and lessen this gap. Here, we develop and implement an innovative informatic approach to identify therapeutic molecules, using the Connectivity Map and LINCS L1000 databases and disease-associated transcriptional signatures and pathways. We apply this to cystic fibrosis (CF), the most common genetic disease in people of northern European ancestry leading to chronic lung disease and reduced lifespan. We selected and tested 120 small molecules in a CF cell line, finding 8 with activity, and confirmed 3 in primary CF airway epithelia. Although chemically diverse, the transcriptional profiles of the hits suggest a common mechanism associated with the unfolded protein response and/or TNFα signaling. This study highlights the power of informatics to help identify new therapies and reveal mechanistic insights while moving beyond target-centric drug discovery.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Genômica , Humanos
3.
Sci Rep ; 10(1): 20553, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239626

RESUMO

Cystic fibrosis (CF), caused by mutations to CFTR, leads to severe and progressive lung disease. The most common mutant, ΔF508-CFTR, undergoes proteasomal degradation, extinguishing its anion channel function. Numerous in vitro interventions have been identified to partially rescue ΔF508-CFTR function yet remain poorly understood. Improved understanding of both the altered state of CF cells and the mechanisms of existing rescue strategies could reveal novel therapeutic strategies. Toward this aim, we measured transcriptional profiles of established temperature, genetic, and chemical interventions that rescue ΔF508-CFTR and also re-analyzed public datasets characterizing transcription in human CF vs. non-CF samples from airway and whole blood. Meta-analysis yielded a core disease signature and two core rescue signatures. To interpret these through the lens of prior knowledge, we compiled a "CFTR Gene Set Library" from literature. The core disease signature revealed remarkably strong connections to genes with established effects on CFTR trafficking and function and suggested novel roles of EGR1 and SGK1 in the disease state. Our data also revealed an unexpected mechanistic link between several genetic rescue interventions and the unfolded protein response. Finally, we found that C18, an analog of the CFTR corrector compound Lumacaftor, induces almost no transcriptional perturbation despite its rescue activity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Brônquios/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Mutação , Transporte Proteico/genética , Transcriptoma/genética
4.
Pac Symp Biocomput ; 23: 180-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218880

RESUMO

Hypertension is a major risk factor for ischemic cardiovascular disease and cerebrovascular disease, which are respectively the primary and secondary most common causes of morbidity and mortality across the globe. To alleviate the risks of hypertension, there are a number of effective antihypertensive drugs available. However, the optimal treatment blood pressure goal for antihypertensive therapy remains an area of controversy. The results of the recent Systolic Blood Pressure Intervention Trial (SPRINT) trial, which found benefits for intensive lowering of systolic blood pressure, have been debated for several reasons. We aimed to assess the benefits of treating to four different blood pressure targets and to compare our results to those of SPRINT using a method for causal inference called the parametric g formula. We applied this method to blood pressure measurements obtained from the electronic health records of approximately 200,000 patients who visited the Mount Sinai Hospital in New York, NY. We simulated the effect of four clinically relevant dynamic treatment regimes, assessing the effectiveness of treating to four different blood pressure targets: 150 mmHg, 140 mmHg, 130 mmHg, and 120 mmHg. In contrast to current American Heart Association guidelines and in concordance with SPRINT, we find that targeting 120 mmHg systolic blood pressure is significantly associated with decreased incidence of major adverse cardiovascular events. Causal inference methods applied to electronic methods are a powerful and flexible technique and medicine may benefit from their increased usage.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Modelos Estatísticos , Algoritmos , Doenças Cardiovasculares/prevenção & controle , Causalidade , Transtornos Cerebrovasculares/prevenção & controle , Biologia Computacional/métodos , Simulação por Computador , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Método de Monte Carlo , Fatores de Risco , Análise de Sobrevida
5.
Pac Symp Biocomput ; 23: 32-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218867

RESUMO

Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.


Assuntos
Transcriptoma/efeitos dos fármacos , Algoritmos , Células/efeitos dos fármacos , Células/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Reposicionamento de Medicamentos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos
6.
Wiley Interdiscip Rev Syst Biol Med ; 8(3): 186-210, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27080087

RESUMO

Data in the biological, chemical, and clinical domains are accumulating at ever-increasing rates and have the potential to accelerate and inform drug development in new ways. Challenges and opportunities now lie in developing analytic tools to transform these often complex and heterogeneous data into testable hypotheses and actionable insights. This is the aim of computational pharmacology, which uses in silico techniques to better understand and predict how drugs affect biological systems, which can in turn improve clinical use, avoid unwanted side effects, and guide selection and development of better treatments. One exciting application of computational pharmacology is drug repurposing-finding new uses for existing drugs. Already yielding many promising candidates, this strategy has the potential to improve the efficiency of the drug development process and reach patient populations with previously unmet needs such as those with rare diseases. While current techniques in computational pharmacology and drug repurposing often focus on just a single data modality such as gene expression or drug-target interactions, we argue that methods such as matrix factorization that can integrate data within and across diverse data types have the potential to improve predictive performance and provide a fuller picture of a drug's pharmacological action. WIREs Syst Biol Med 2016, 8:186-210. doi: 10.1002/wsbm.1337 For further resources related to this article, please visit the WIREs website.


Assuntos
Reposicionamento de Medicamentos/métodos , Animais , Bases de Dados Factuais , Interações Medicamentosas , Reposicionamento de Medicamentos/economia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Preparações Farmacêuticas/química , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28413689

RESUMO

The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000 resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA