Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812370

RESUMO

Since the emergence of Ug99 wheat stem rust in Uganda in 1998 (Pretorius et al. 2000), the threat of movement into South Asia has been a concern due to long-distance dispersal capacity of airborne spores (Brown and Hovmøller 2002; Singh et al. 2008; Meyer et al. 2017). Increased preparedness by comprehensive rust surveillance efforts and development and deployment of resistant cultivars in advance of an incursion into South Asia has been one of the success stories of the Borlaug Global Rust Initiative (Sharma et al. 2013). In November 2023, an off-season rust survey was conducted in Marpha, Gandaki and Bagmati provinces in Nepal. Rust was only observed at two sites, Dangdunge of Dolakha district and Mude of Sindhupalchok district, where spring wheat was grown as fodder crop outside the main cropping season. Rust infected wheat leaves (10-15 leaves per site) were air dried and sealed in envelopes that were shipped under permit to the Global Rust Reference Center, Denmark. Bulk samples of stem rust, Puccinia graminis f.sp. tritici (Pgt), were recovered from both envelopes, and single pustule isolates were raised and multiplied on Morocco and McNair. Meanwhile, specimens of dry leaves were subjected to SSR genotyping according to standard procedures (Patpour et al. 2022). One distinct multi-locus Pgt genotype was observed, identical to and representing 99% of Ug99 isolates within Clade I collected in East Africa between 2012-2022. A Pgt single pustule isolate from each of the sampling sites were inoculated onto 20 internationally agreed stem rust differential lines using standard procedures, and 14 supplementary lines providing additional resolution of pathogen virulence (Patpour et al. 2022). The pathotyping was repeated in two independent experiments, which resulted in the infection type pattern of Pgt race TTKTT (Supplementary Table 1). Additional independent SSR genotype assays of recovered isolates confirmed the prevalent genotype of Clade I (Patpour et al. 2022; Szabo et al. 2022). This first detection of Ug99 race TTKTT in South Asia emphasizes the need for continued coordinated international surveillance efforts and utilization of diverse sources of resistance to control stem rust in wheat. New surveillance efforts in Nepal during February-March 2024 did not reveal additional cases of wheat stem rust. However, more detailed and sustained rust surveillance efforts, assessment of the vulnerability of current wheat crops to Ug99 and other races of stem-, stripe/yellow- and leaf rust, as well as intensified breeding for rust resistance throughout the region is strongly recommended to meet current and future plant health risks.

2.
Plant Dis ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779248

RESUMO

A wheat rust survey was conducted in Iraq in 2019 and collected 27 stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikks. & E. Henn.) samples. Seven samples were viable, and they were tested for races of P. graminis f. sp. tritici at the Regional Cereal Rust Research Center (RCRRC) in Izmir, Turkey under strict quarantine procedures. Two 0.5 cm segments of each infected stem sheath were incubated in a petri dish at 20°C for three hours for re-hydration of urediniospores, which were multiplied on 10-day old seedlings of susceptible cultivar Morocco grown in a spore free growth chamber at 18°C and 16 hours light. Inoculated seedlings underwent a dew period at 18°C for 16 hours dark and 8 hours fluorescent light and 95% relative humidity. Three days after moving the pots to a growth chamber with eight hours dark at 18°C and 16 hours light (300 µmol m-2s-1), each pot was covered using a cellophane bag. Bulk urediniospores of each collection were collected 14 days post-inoculation from a cellophane bag using a mini cyclone spore collector connected to a gelatin capsule. One ml of 3M Novec™ oil was added to each capsule, and spores were inoculated onto 20 North American stem rust differential lines using the standard procedures (Jin et al. 2008). Pre-inoculation, inoculation, incubation, and post-inoculation conditions were the same as above. Seedling infection types (ITs) were recorded 14 days post-inoculation using 0 to 4 scale (Stakman et al. 1962). Race designation followed the five- letter code nomenclature described by Jin et al. (2008). Out of the seven samples, four were typed as TKKTF, two as TKTTF, and one collected from an advanced breeding bread wheat line "Shahoo 2" (Inqalab 91*2/Tukuru) in a trial site at Halabja governorate showed mixed ITs of 11+ and 3+ for lines carrying Sr11, Sr24, Sr36, and Sr31. Three single pustule (SP) isolates were developed from the IT of 3+ pustules collected from the Sr31 tester line, and one SP isolate was developed from the IT 11+ pustule collected from the Sr11 source. After spore multiplication, the SP-derived isolates were inoculated on the 20 North American differential lines. To confirm virulence/avirulence on Sr24, Sr31, and Sr36, cultivars Siouxland (PI 483469, Sr24+Sr31) and Sisson (PI 617053, Sr36+Sr31) were also inoculated. All seedling assays were repeated three times. The three SP isolates virulent on Sr31 were designated as race TTKTT, and the SP isolate avirulent on Sr11 was designated as TKTTF. Seedling ITs of 3+ and 0; were recorded for Siouxland and Sisson against TTKTT, respectively, and both cultivars showed IT of 1+ against TKTTF. Race TKTTF was similar to TKKTF except for additional virulence on Sr36, and TTKTT differed from the other two races being virulent on Sr24 and Sr31. DNA analysis of three TTKTT isolates from Kenya and the TTKTT isolate from Iraq using a diagnostic qPCR assay developed by the USDA-ARS Cereals Disease Laboratory (Ug99 RG stage 1, Szabo unpublished) confirmed that all tested isolates belonged to the Ug99 lineage. Race TTKTT was first reported from Kenya in 2014 (Patpour et al. 2016), and in 2018 from Ethiopia (Hei et al. 2020). We report the first detection of TTKTT in Iraq and the Middle East region. This represents only the third instance of a member of the Ug99 race group outside of Africa since first detection of race TTKSK in Yemen in 2006, and Iran in 2007 (Nazari et al. 2009). The continued spread of stem rust races with complex virulence and the increasing frequency and early onset of stem rust infections in the Middle East is a cause for concern. Continuous support for rust surveillance and race typing in this region remains crucial. References: Hei, N. B., et al. 2020. Plant Dis. 104:982. Jin, Y., et al. 2008. Plant Dis. 92:923-926. Nazari, K., et al. 2009. Plant Dis. 93:317. Patpour, M., et al. 2016. Plant Dis. 100:522. Stakman, E. C., et al. 1962. Identification of physiological races of Puccinia graminis var. tritici. U. S. Dep. Agric. ARS E-617.

3.
PLoS One ; 14(7): e0219327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365535

RESUMO

Crops are variously susceptible to biotic stresses-something expected to increase under climate change. In the case of staple crops, this potentially undermines household and national food security. We examine recent wheat rust epidemics and smallholders' coping mechanisms in Ethiopia as a case study. Wheat is a major food crop in Ethiopia widely grown by smallholders. In 2010/11 a yellow rust epidemic affected over one-third of the national wheat area. Two waves of nationally representative household level panel data collected for the preceding wheat season (2009/10) and three years after (2013/14) the occurrence of the epidemic allow us to analyze the different coping mechanisms farmers used in response. Apart from using fungicides as ex-post coping mechanism, increasing wheat area under yellow rust resistant varieties, increasing diversity of wheat varieties grown, or a combination of these strategies were the main ex-ante coping mechanisms farmers had taken in reducing the potential effects of rust re-occurrence. Large-scale dis-adoption of highly susceptible varieties and replacement with new, rust resistant varieties was observed subsequent to the 2010/11 epidemic. Multinomial logistic regression models were used to identify the key factors associated with smallholder ex-ante coping strategies. Household characteristics, level of specialization in wheat and access to improved wheat seed were the major factors that explained observed choices. There was 29-41% yield advantage in increasing wheat area to the new, resistant varieties even under normal seasons with minimum rust occurrence in the field. Continuous varietal development in responding to emerging new rust races and supporting the deployment of newly released resistant varieties could help smallholders in dealing with rust challenges and maintaining improved yields in the rust-prone environments of Ethiopia. Given the global importance of both wheat and yellow rust and climate change dynamics study findings have relevance to other regions.


Assuntos
Produção Agrícola/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota , Resistência à Doença , Etiópia , Fazendeiros , Fungicidas Industriais/uso terapêutico , Humanos , Doenças das Plantas/prevenção & controle
4.
Front Physiol ; 4: 40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23515351

RESUMO

Crop improvement efforts have benefited greatly from advances in available data, computing technology, and methods for targeting genotypes to environments. These advances support the analysis of genotype by environment interactions (GEI) to understand how well a genotype adapts to environmental conditions. This paper reviews the use of spatial analysis to support crop improvement research aimed at matching genotypes to their most appropriate environmental niches. Better data sets are now available on soils, weather and climate, elevation, vegetation, crop distribution, and local conditions where genotypes are tested in experimental trial sites. The improved data are now combined with spatial analysis methods to compare environmental conditions across sites, create agro-ecological region maps, and assess environment change. Climate, elevation, and vegetation data sets are now widely available, supporting analyses that were much more difficult even 5 or 10 years ago. While detailed soil data for many parts of the world remains difficult to acquire for crop improvement studies, new advances in digital soil mapping are likely to improve our capacity. Site analysis and matching and regional targeting methods have advanced in parallel to data and technology improvements. All these developments have increased our capacity to link genotype to phenotype and point to a vast potential to improve crop adaptation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA