Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 137, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106449

RESUMO

In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.


Assuntos
Vesículas Extracelulares , Nanopartículas , Bioengenharia , Regeneração Óssea
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055017

RESUMO

Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs' potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration.


Assuntos
Regeneração Óssea , Argila , Vesículas Extracelulares/metabolismo , Gelatina , Hidrogéis , Metacrilatos , Nanogéis , Engenharia Tecidual , Fenômenos Químicos , Argila/química , Matriz Extracelular , Vesículas Extracelulares/ultraestrutura , Gelatina/química , Humanos , Hidrogéis/química , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Silicatos
3.
Biochem Biophys Res Commun ; 534: 14-20, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310182

RESUMO

Bone represents the most common site for breast cancer metastasis. Bone is a highly dynamic organ that is constantly adapting to its biophysical environment, orchestrated largely by the resident osteocyte network. Osteocytes subjected to physiologically relevant biophysical conditions may therefore represent a source of key factors mediating breast cancer cell metastasis to bone. Therefore, we investigated the potential proliferative and migratory capacity of soluble factors released by mechanically stimulated osteocytes on breast cancer cell behaviour. Interestingly the secretome of mechanically stimulated osteocytes enhanced both the proliferation and migration of cancer cells when compared to the secretome of statically cultured osteocytes, demonstrating that mechanical stimuli is an important physiological stimulus that should be considered when identifying potential targets. Using a cytokine array, we further identified a group of mechanically activated cytokines in the osteocyte secretome, which potentially drive breast cancer metastasis. In particular, CXCL1 and CXCL2 cytokines are highly expressed, mechanically regulated, and are known to interact with one another. Lastly, we demonstrate that these specific factors enhance breast cancer cell migration independently and in a synergistic manner, identifying potential osteocyte derived factors mediating breast cancer metastasis to bone.


Assuntos
Neoplasias da Mama/patologia , Quimiocina CXCL1/farmacologia , Quimiocina CXCL2/farmacologia , Osteócitos/citologia , Animais , Fenômenos Biomecânicos , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Osteócitos/fisiologia
4.
J Cell Sci ; 131(21)2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30301777

RESUMO

Mechanical loading is a potent stimulus of bone adaptation, requiring the replenishment of the osteoblast from a progenitor population. One such progenitor is the mesenchymal stem cell (MSC), which undergoes osteogenic differentiation in response to oscillatory fluid shear. Yet, the mechanism mediating stem cell mechanotransduction, and thus the potential to target this therapeutically, is poorly understood. In this study, we demonstrate that MSCs utilise cAMP as a second messenger in mechanotransduction, which is required for flow-mediated increases in osteogenic gene expression. Furthermore, we demonstrate that this mechanosignalling is dependent on the primary cilium and the ciliary localised adenylyl cyclase 6. Finally, we also demonstrate that this mechanotransduction mechanism can be targeted therapeutically to enhance cAMP signalling and early osteogenic signalling, mimicking the beneficial effect of physical loading. Our findings therefore demonstrate a novel mechanism of MSC mechanotransduction that can be targeted therapeutically, demonstrating a potential mechanotherapeutic for bone-loss diseases such as osteoporosis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Adenilil Ciclases/metabolismo , Cílios/metabolismo , AMP Cíclico/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Cílios/enzimologia , Mecanotransdução Celular , Células-Tronco Mesenquimais/enzimologia , Camundongos , Transdução de Sinais
5.
FASEB J ; 33(3): 4178-4187, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550359

RESUMO

Macroscale loading of bone generates a complex local mechanical microenvironment that drives osteogenesis and bone mechanoadaptation. One such mechanical stimulus generated is hydrostatic pressure (HP); however, the effect of HP on mesenchymal stem cells (MSCs) and the mechanotransduction mechanisms utilized by these cells to sense this stimulus are yet to be fully elucidated. In this study, we demonstrate that cyclic HP is a potent mediator of cytoskeletal reorganization and increases in osteogenic responses in MSCs. In particular, we demonstrate that the intermediate filament (IF) network undergoes breakdown and reorganization with centripetal translocation of IF bundles toward the perinuclear region. Furthermore, we show for the first time that this IF remodeling is required for loading-induced MSC osteogenesis, revealing a novel mechanism of MSC mechanotransduction. In addition, we demonstrate that chemical disruption of IFs with withaferin A induces a similar mechanism of IF breakdown and remodeling as well as a subsequent increase in osteogenic gene expression in MSCs, exhibiting a potential mechanotherapeutic effect to enhance MSC osteogenesis. This study therefore highlights a novel mechanotransduction mechanism of pressure-induced MSC osteogenesis involving the understudied cytoskeletal structure, the IF, and demonstrates a potential new therapy to enhance bone formation in bone-loss diseases such as osteoporosis.-Stavenschi, E., Hoey, D. A. Pressure-induced mesenchymal stem cell osteogenesis is dependent on intermediate filament remodeling.


Assuntos
Filamentos Intermediários/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Linhagem Celular , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Expressão Gênica/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos
6.
Prostate ; 79(2): 115-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30225866

RESUMO

BACKGROUND: Direct mechanical characterization of tissue is the application of engineering techniques to biological tissue to ascertain stiffness or elasticity, which can change in response to disease states. A number of papers have been published on the application of these techniques to prostate tissue with a range of results reported. There is a marked variability in the results depending on testing techniques and disease state of the prostate tissue. We aimed to clarify the utility of direct mechanical characterization of prostate tissue in identifying disease states. METHODS: A systematic review of the published literature regarding direct mechanical characterization of prostate tissue was undertaking according to PRISMA guidelines. RESULTS: A variety of testing methods have been used, including compression, indentation, and tensile testing, as well as some indirect testing techniques, such as shear-wave elastography. There is strong evidence of significant stiffness differences between cancerous and non-cancerous prostate tissue, as well as correlations with prostate cancer stage. There is a correlation with increasing prostate stiffness and increasing lower urinary tract symptoms in patients with benign prostate hyperplasia. There is a wide variation in the testing methods and protocols used in the literature making direct comparison between papers difficult. Most studies utilise ex-vivo or cadaveric tissue, while none incorporate in vivo testing. CONCLUSION: Direct mechanical assessment of prostate tissue permits a better understanding of the pathological and physiological changes that are occurring within the tissue. Further work is needed to include prospective and in vivo data to aid medical device design and investigate non-surgical methods of managing prostate disease.


Assuntos
Próstata/citologia , Neoplasias da Próstata/patologia , Fenômenos Biomecânicos , Humanos , Masculino , Próstata/fisiologia , Neoplasias da Próstata/fisiopatologia
7.
Cells Tissues Organs ; 207(2): 83-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31655814

RESUMO

Bone formation requires the replenishment of the osteoblast from a progenitor or stem cell population, which must be recruited, expanded, and differentiated to ensure continued anabolism. How this occurs and whether it is altered in the osteoporotic environment is poorly understood. Furthermore, given that emerging treatments for osteoporosis are targeting this progenitor population, it is critical to determine the regenerative capacity of this cell type in the setting of osteoporosis. Human bone marrow stromal cells (hMSCs) from a cohort of aged osteoporotic patients were compared to MSCs isolated from healthy donors in terms of the ability to undergo recruitment and proliferation, and also respond to both the biophysical and biochemical cues that drive osteogenic matrix deposition. hMSCs isolated from healthy donors demonstrate good recruitment, mechanosensitivity, proliferation, and differentiation capacity. Contrastingly, hMSCs isolated from aged osteoporotic patients had significantly diminished regenerative potential. Interestingly, we demonstrated that osteoporotic hMSCs no longer responded to chemokine-directing recruitment and became desensitised to mechanical stimulation. The osteoporotic MSCs had a reduced proliferative potential and, importantly, they demonstrated an attenuated differentiation capability with reduced mineral and lipid formation. Moreover, during osteogenesis, despite minimal differences in the quantity of deposited collagen, the distribution of collagen was dramatically altered in osteoporosis, suggesting a potential defect in matrix quality. Taken together, this study has demonstrated that hMSCs isolated from aged osteoporotic patients demonstrate defective cell behaviour on multiple fronts, resulting in a significantly reduced regenerative potential, which must be considered during the development of new anabolic therapies that target this cell population.


Assuntos
Envelhecimento , Células-Tronco Mesenquimais/patologia , Osteoporose/patologia , Adipogenia , Adulto , Idoso de 80 Anos ou mais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Quimiotaxia , Colágeno/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Osteogênese , Cultura Primária de Células , Adulto Jovem
8.
Curr Osteoporos Rep ; 17(4): 195-206, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31250372

RESUMO

PURPOSE OF REVIEW: Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS: Both ß1 and ß3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.


Assuntos
Remodelação Óssea , Integrinas/metabolismo , Mecanotransdução Celular , Osteócitos/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/fisiopatologia , Neoplasias Ósseas/secundário , Adesão Celular/fisiologia , Humanos , Integrinas/fisiologia , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Osteócitos/fisiologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Transdução de Sinais/fisiologia , Suporte de Carga
9.
Biol Reprod ; 97(2): 302-312, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044427

RESUMO

Cation channels of sperm (CatSper) are sperm-specific calcium channels with identified roles in the regulation of sperm function in humans, mice, and horses. We sought to employ a comparative genomics approach to identify conserved CATSPER genes in the bovine genome, and profile their expression in reproductive tissue. We hypothesized that CATSPER proteins expressed in bull testicular tissue mediates sperm hyperactivation and their rheotactic response in the reproductive tract of the cow. Bioinformatic analysis identified all four known CATSPER genes (CATSPER 1-4) in the bovine genome, and profiling by quantitative real-time polymerase chain reaction identified site-specific variation in messenger ribonucleic acid (mRNA) expression for all four genes along the reproductive tract of the bull. Using a novel antibody against CATSPER 1, protein expression was confirmed and localized to the principal piece of bull sperm, in agreement with what has been reported in other species. Subsequent treatment of bull sperm with either the calcium chelator ethylene glycol tetraacetic acid; mibefradil, a specific blocker of CatSper channels in human sperm; or CATSPER1 antibody all significantly inhibited caffeine-induced hyperactivation and the rheotactic response, supporting the concept that the calcium influx occurs via CatSper channels. Taken together, the work here provides novel insights into expression and function of CatSper channels in bull testicular tissue and in the function of ejaculated sperm.


Assuntos
Canais de Cálcio/metabolismo , Bovinos/fisiologia , Regulação da Expressão Gênica/fisiologia , Genômica/métodos , Transcriptoma/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Biologia Computacional , Genoma , Masculino , Sêmen/fisiologia
10.
FASEB J ; 30(4): 1504-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26675708

RESUMO

It has long been suspected, but never directly shown, that bone formed to accommodate an increase in mechanical loading is related to the creation of osteoblasts from skeletal stem cells. Indeed, biophysical stimuli potently regulate osteogenic lineage commitmentin vitro In this study, we transplanted bone marrow cells expressing green fluorescent protein, to enable lineage tracing, and subjected mice to a biophysical stimulus, to elicit a bone-forming response. We detected cells derived from transplanted progenitors embedded within the bone matrix near active bone-forming surfaces in response to loading, demonstrating for the first time, that mechanical signals enhance the homing and attachment of bone marrow cells to bone surfaces and the commitment to an osteogenic lineage of these cellsin vivo Furthermore, we used an inducible Cre/Lox recombination system to delete kinesin family member 3A (Kif3a), a gene that is essential for primary cilia formation, at will in transplanted cells and their progeny, regardless of which tissue may have incorporated them. Disruption of the mechanosensing organelle, the primary cilium in a progenitor population, significantly decreased the amount of bone formed in response to mechanical stimulation. The collective results of our study directly demonstrate that, in a novel experimental stem cell mechanobiology model, mechanical signals enhance osteogenic lineage commitmentin vivoand that the primary cilium contributes to this process.-Chen, J. C., Hoey, D. A., Chua, M., Bellon, R., Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism.


Assuntos
Cílios/fisiologia , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Células Cultivadas , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Cinesinas/genética , Cinesinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Estresse Mecânico
11.
Biochem Biophys Res Commun ; 459(1): 118-23, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721667

RESUMO

Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24 hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors.


Assuntos
Osteoblastos/fisiologia , Osteócitos/fisiologia , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Quimiotaxia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteoblastos/citologia , Osteócitos/citologia , Osteogênese/efeitos dos fármacos , Estimulação Física
12.
FASEB J ; 28(3): 1157-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24277577

RESUMO

Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction.


Assuntos
Adaptação Fisiológica , Adenilil Ciclases/metabolismo , Osso e Ossos/fisiologia , Animais , Ciclo-Oxigenase 2/genética , Feminino , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética
13.
J Mech Behav Biomed Mater ; 150: 106292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109813

RESUMO

All human tissues present with unique mechanical properties critical to their function. This is achieved in part through the specific architecture of the extracellular matrix (ECM) fibres within each tissue. An example of this is seen in the walls of the vasculature where each layer presents with a unique ECM orientation critical to its functions. Current adopted vascular grafts to bypass a stenosed/damaged vessel fail to recapitulate this unique mechanical behaviour, particularly in the case of small diameter vessels (<6 mm), leading to failure. Therefore, in this study, melt-electrowriting (MEW) was adopted to produce a range of fibrous scaffolds to mimic the extracellular matrix (ECM) architecture of the tunica media of the vasculature, in an attempt to match the mechanical and biological behaviour of the native porcine tissue. Initially, the range of collagen architectures within the native vessel was determined, and subsequently replicated using MEW (winding angles (WA) 45°, 26.5°, 18.4°, 11.3°). These scaffolds recapitulated the anisotropic, non-linear mechanical behaviour of native carotid blood vessels. Moreover, these grafts facilitated human mesenchymal stem cell (hMSC) infiltration, differentiation, and ECM deposition that was independent of WA. The bioinspired MEW fibre architecture promoted cell alignment and preferential neo-tissue orientation in a manner similar to that seen in native tissue, particularly for WA 18.4° and 11.3°, which is a mandatory requirement for long-term survival of the regenerated tissue post-scaffold degradation. Lastly, the WA 18.4° was translated to a tubular graft and was shown to mirror the mechanical behaviour of small diameter vessels within physiological strain. Taken together, this study demonstrates the capacity to use MEW to fabricate bioinspired scaffolds to mimic the tunica media of vessels and recapitulate vascular mechanics which could act as a framework for small diameter graft development to guide tissue regeneration and orientation.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos , Suínos , Colágeno , Matriz Extracelular , Diferenciação Celular
14.
Stem Cells ; 30(11): 2561-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969057

RESUMO

Physical loading is a potent stimulus required to maintain bone homeostasis, partly through the renewal and osteogenic differentiation of mesenchymal stem cells (MSCs). However, the mechanism by which MSCs sense a biophysical force and translate that into a biochemical bone forming response (mechanotransduction) remains poorly understood. The primary cilium is a single sensory cellular extension, which has recently been shown to demonstrate a role in cellular mechanotransduction and MSC lineage commitment. In this study, we present evidence that short periods of mechanical stimulation in the form of oscillatory fluid flow (OFF) is sufficient to enhance osteogenic gene expression and proliferation of human MSCs (hMSCs). Furthermore, we demonstrate that the cilium mediates fluid flow mechanotransduction in hMSCs by maintaining OFF-induced increases in osteogenic gene expression and, surprisingly, to limit OFF-induced increases in proliferation. These data therefore demonstrate a pro-osteogenic mechanosensory role for the primary cilium, establishing a novel mechanotransduction mechanism in hMSCs. Based on these findings, the application of OFF may be a beneficial component of bioreactor-based strategies to form bone-like tissues suitable for regenerative medicine and also highlights the cilium as a potential therapeutic target for efforts to mimic loading with the aim of preventing bone loss during diseases such as osteoporosis. Furthermore, this study demonstrates a role for the cilium in controlling mechanically mediated increases in the proliferation of hMSCs, which parallels proposed models of polycystic kidney disease. Unraveling the mechanisms leading to rapid proliferation of mechanically stimulated MSCs with defective cilia could provide significant insights regarding ciliopathies and cystic diseases.


Assuntos
Cílios/fisiologia , Mecanotransdução Celular , Células-Tronco Mesenquimais/fisiologia , Fenômenos Biomecânicos , Regeneração Óssea , Proliferação de Células , Células Cultivadas , Centríolos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Microtúbulos/metabolismo , Osteogênese/genética , RNA Interferente Pequeno/genética , Estresse Fisiológico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Colloids Surf B Biointerfaces ; 227: 113378, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257301

RESUMO

Gallium oxide has known beneficial osteo-integrative properties. This may have importance for improving the osteointegration of orthopedic implants. At high concentrations gallium is cytotoxic. Therefore, integration of gallium into implant devices must be carefully controlled to limit its concentration and release. A strategy based on surface doping of gallium although challenging seems an appropriate approach to limit dose amounts to minimize cytotoxicity and maximize osteointegration benefits. In this work we develop a novel form of patterned surface doping via a block copolymer-based surface chemistry that enables very low gallium content but enhanced osteointegration as proven by comprehensive bioassays. Polystyrene-b-poly 4vinyl pyridine (PS-b-P4VP) BCP (block copolymer) films were produced on surfaces. Selective infiltration of the BCP pattern with a gallium salt precursor solution and subsequent UV-ozone treatment produced a surface pattern of gallium oxide nanodots as evidenced by atomic force and scanning electron microscopy. A comprehensive study of the bioactivity was carried out, including antimicrobial and sterility testing, gallium ion release kinetics and the interaction with human marrow mesenchymal stomal cells and mononuclear cells. Comparing the data from osteogenesis media assay tests with osteoclastogenesis tests demonstrated the potential for the gallium oxide nanodot doping to improve osteointegration properties of a surface.


Assuntos
Anti-Infecciosos , Gálio , Humanos , Propriedades de Superfície , Gálio/farmacologia , Osteogênese
16.
Stem Cell Res Ther ; 14(1): 364, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087380

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) utilize discrete biosynthetic pathways to self-renew and differentiate into specific cell lineages, with undifferentiated hMSCs harbouring reliance on glycolysis and hMSCs differentiating towards an osteogenic phenotype relying on oxidative phosphorylation as an energy source. METHODS: In this study, the osteogenic differentiation of hMSCs was assessed and classified over 14 days using a non-invasive live-cell imaging modality-two-photon fluorescence lifetime imaging microscopy (2P-FLIM). This technique images and measures NADH fluorescence from which cellular metabolism is inferred. RESULTS: During osteogenesis, we observe a higher dependence on oxidative phosphorylation (OxPhos) for cellular energy, concomitant with an increased reliance on anabolic pathways. Guided by these non-invasive observations, we validated this metabolic profile using qPCR and extracellular metabolite analysis and observed a higher reliance on glutaminolysis in the earlier time points of osteogenic differentiation. Based on the results obtained, we sought to promote glutaminolysis further by using lactate, to improve the osteogenic potential of hMSCs. Higher levels of mineral deposition and osteogenic gene expression were achieved when treating hMSCs with lactate, in addition to an upregulation of lactate metabolism and transmembrane cellular lactate transporters. To further clarify the interplay between glutaminolysis and lactate metabolism in osteogenic differentiation, we blocked these pathways using BPTES and α-CHC respectively. A reduction in mineralization was found after treatment with BPTES and α-CHC, demonstrating the reliance of hMSC osteogenesis on glutaminolysis and lactate metabolism. CONCLUSION: In summary, we demonstrate that the osteogenic differentiation of hMSCs has a temporal metabolic profile and shift that is observed as early as day 3 of cell culture using 2P-FLIM. Furthermore, extracellular lactate is shown as an essential metabolite and metabolic fuel to ensure efficient osteogenic differentiation and as a signalling molecule to promote glutaminolysis. These findings have significant impact in the use of 2P-FLIM to discover potent approaches towards bone tissue engineering in vitro and in vivo by engaging directly with metabolite-driven osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Osso e Ossos , Células Cultivadas
17.
Biofabrication ; 15(3)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201517

RESUMO

Endochondral ossification (EO) is an essential biological process than underpins how human bones develop, grow, and heal in the event of a fracture. So much is unknown about this process, thus clinical manifestations of dysregulated EO cannot be adequately treated. This can be partially attributed to the absence of predictivein vitromodels of musculoskeletal tissue development and healing, which are integral to the development and preclinical evaluation of novel therapeutics. Microphysiological systems, or organ-on-chip devices, are advancedin vitromodels designed for improved biological relevance compared to traditionalin vitroculture models. Here we develop a microphysiological model of vascular invasion into developing/regenerating bone, thereby mimicking the process of EO. This is achieved by integrating endothelial cells and organoids mimicking different stages of endochondral bone development within a microfluidic chip. This microphysiological model is able to recreate key events in EO, such as the changing angiogenic profile of a maturing cartilage analogue, and vascular induced expression of the pluripotent transcription factors SOX2 and OCT4 in the cartilage analogue. This system represents an advancedin vitroplatform to further EO research, and may also serve as a modular unit to monitor drug responses on such processes as part of a multi-organ system.


Assuntos
Células Endoteliais , Osteogênese , Humanos , Cartilagem/fisiologia , Osso e Ossos , Organoides , Dispositivos Lab-On-A-Chip
18.
Sci Adv ; 9(4): eade2155, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696489

RESUMO

Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.


Assuntos
Cartilagem Articular , Canais de Cátion TRPV , Animais , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Cartilagem Articular/metabolismo , Osteogênese , Morfogênese
19.
Bioengineering (Basel) ; 9(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35049744

RESUMO

Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical and biophysical environment. Osteocytes form a sensory network throughout the tissue and orchestrate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix (ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin (Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover, three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour. Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific gene, Sost, overcoming a major limitation of this model.

20.
Front Bioeng Biotechnol ; 10: 829969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433655

RESUMO

The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA