Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; : e2400078, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824665

RESUMO

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

2.
J Neuroinflammation ; 21(1): 11, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178148

RESUMO

The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.


Assuntos
Doxiciclina , Microbioma Gastrointestinal , Camundongos , Animais , Doxiciclina/farmacologia , Camundongos Transgênicos , Lipopolissacarídeos , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transativadores/genética , Inflamação , Transgenes
3.
Pediatr Res ; 95(6): 1564-1571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228744

RESUMO

BACKGROUND: In very low birth weight (VLBW) infants, human milk cream added to standard human milk fortification is used to improve growth. This study aimed to evaluate the impact of cream supplement on the intestinal microbiome of VLBW infants. METHODS: Whole genome shotgun sequencing was performed on stool (n = 57) collected from a cohort of 23 infants weighing 500-1250 grams (control = 12, cream = 11). Both groups received an exclusive human milk diet (mother's own milk, donor human milk, and donor human milk-derived fortifier) with the cream group receiving an additional 2 kcal/oz cream at 100 mL/kg/day of fortified feeds and then 4 kcal/oz if poor growth. RESULTS: While there were no significant differences in alpha diversity, infants receiving cream significantly differed from infants in the control group in beta diversity. Cream group samples had significantly higher prevalence of Proteobacteria and significantly lower Firmicutes compared to control group. Klebsiella species dominated the microbiota of cream-exposed infants, along with bacterial pathways involved in lipid metabolism and metabolism of cofactors and amino acids. CONCLUSIONS: Cream supplementation significantly altered composition of the intestinal microbiome of VLBW infants to favor increased prevalence of Proteobacteria and functional gene content associated with these bacteria. IMPACT: We report changes to the intestinal microbiome associated with administration of human milk cream; a novel supplement used to improve growth rates of preterm very low birth weight infants. Since little is known about the impact of cream on intestinal microbiota composition of very low birth weight infants, our study provides valuable insight on the effects of diet on the microbiome of this population. Dietary supplements administered to preterm infants in neonatal intensive care units have the potential to influence the intestinal microbiome composition which may affect overall health status of the infant.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Leite Humano , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Recém-Nascido , Estudos Prospectivos , Feminino , Masculino , Alimentos Fortificados , Fezes/microbiologia , Proteobactérias , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição do Lactente
4.
J Virol ; 96(7): e0190421, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285685

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Células A549 , Antivirais/farmacologia , Linhagem Celular , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Índice de Gravidade de Doença , Especificidade da Espécie , Replicação Viral
5.
Pediatr Res ; 93(3): 535-540, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35701607

RESUMO

BACKGROUND: The increasing incidence of inflammatory bowel disease (IBD: Crohn's disease and ulcerative colitis) around the world has coincided with a wide array of environmental and epidemiologic changes. The relationship between IBD incidence and household or family size decline, however, has not been examined before. Our background epidemiological analyses suggested an inverse association between household size and IBD incidence. We aimed to examine this further in a murine model. METHODS: We designed a unique two-generation cohousing model of family size and IBD susceptibility in C57BL/6J mice. Serial fecal microbiomes during cohousing were examined by high-throughput 16S rRNA sequencing. After cohousing for 10 days, mice were exposed to dextran sulfate sodium (DSS) to induce acute colitis. Body weight as a significant correlate of colitis severity was measured. RESULTS: Mice in a large household arrangement demonstrated less weight loss than mice in the small household arrangement in the DSS model. Age- and housing-dependent microbiome shifts were found. CONCLUSIONS: Larger households may be protective against intestinal inflammation through intergenerational microbiome modulation. Our observations may set the foundation for age-dependent, microbiome-directed future prevention against IBD. IMPACT: Epidemiological analyses in this study suggested that IBD incidence may inversely correlate with household size (an indicator of family size/children per family), which has not been examined before. A uniquely designed two-generation cohousing model of family size and IBD susceptibility in mice supported our epidemiologic observations. Microbiome changes in our cohousing model may set the foundation for age-dependent, microbiome-directed prevention against IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/prevenção & controle , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/complicações
6.
Curr Microbiol ; 81(1): 45, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127093

RESUMO

C-reactive protein (CRP) is a commonly used marker of low-grade inflammation as well as a marker of acute infection. CRP levels are elevated in those with diabetes and increased CRP concentrations are a risk factor for developing type 2 diabetes. Gut microbiome effects on metabolism and immune responses can impact chronic inflammation, including affecting CRP levels, that in turn can lead to the development and maintenance of dysglycemia. Using a high-sensitivity C-reactive protein (hsCRP) assay capable of detecting subtle changes in C-reactive protein, we show that higher hsCRP levels specifically correlate with worsening glycemia, reduced microbial richness and evenness, and with a reduction in the Firmicutes/Bacteroidota ratio. These data demonstrate a pivotal role for CRP not only in the context of worsening glycemia and changes to the gut microbiota, but also highlight CRP as a potential target for mitigating type 2 diabetes progression or as a therapeutic target that could be manipulated through the microbiome. Understanding these processes will provide insights into the etiology of type 2 diabetes in addition to opening doors leading to possible novel diagnostic strategies and therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Proteína C-Reativa , Inflamação
7.
Pancreatology ; 22(8): 1126-1133, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198488

RESUMO

BACKGROUND: Although micronutrients modulate immunity and inflammation, it remains elusive whether they are implicated in the development and progression of chronic pancreatitis (CP). This study aimed to investigate differences in the circulating levels of selected carotenoids and vitamins between CP and controls and trends in the levels of these micronutrients across controls, early CP, and definite CP. METHODS: Demographic and lifestyle data were extracted from medical records for 53 patients with CP (13 early and 38 definite) and obtained using a questionnaire for 52 controls. Plasma ß-carotene, lycopene, cryptoxanthin, zeaxanthin, and α-tocopherol and serum 25(OH)D, folate, IL-6, TNF-α, and MCP-1 were measured with state-of-the-art methods. RESULTS: The levels of all micronutrients (except folate) were significantly lower in CP than in controls. There was a progressive decrease in the levels of these micronutrients across controls, early CP, and definite CP (all p values for trend: ≤0.0012); e.g., plasma lycopene was 36.6, 21.5, and 14.5 µg/dL for controls, early CP, and definite CP, respectively. After adjustment for confounders, there were strong, inverse associations between the levels of all micronutrients (except folate) and CP (e.g., OR (95% CI) for ≥ median vs.

Assuntos
Carotenoides , Pancreatite Crônica , Humanos , Micronutrientes , alfa-Tocoferol , Licopeno , Fator de Necrose Tumoral alfa , Interleucina-6 , Ácido Fólico , Inflamação
8.
Pediatr Res ; 92(6): 1580-1589, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35338351

RESUMO

BACKGROUND: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS: C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS: Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS: We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT: Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Microbiota , Pneumonia , Animais , Recém-Nascido , Humanos , Camundongos , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Animais Recém-Nascidos , Disbiose , Lipopolissacarídeos/metabolismo , Multiômica , Recém-Nascido Prematuro , Pulmão/metabolismo , Pneumonia/metabolismo , Inflamação/metabolismo , Metaboloma , Modelos Animais de Doenças
9.
Microb Ecol ; 83(3): 811-821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34223947

RESUMO

Limited data exist on the spatial distribution of the colonic bacteria in humans. We collected the colonic biopsies from five segments of 27 polyp-free adults and collected feces from 13 of them. We sequenced the V4 region of the bacterial 16S rRNA gene using the MiSeq platform. The sequencing data were assigned to the amplicon sequence variant (ASV) using SILVA. Biodiversity and the relative abundance of the ASV were compared across the colonic segments and between the rectal and fecal samples. Bacterial functional capacity was assessed using Tax4fun. Each individual had a unique bacterial community composition (Weighted Bray-Curtis P value = 0.001). There were no significant differences in richness, evenness, community composition, and the taxonomic structure across the colon segments in all the samples. Firmicutes (47%), Bacteroidetes (39%), and Proteobacteria (6%) were the major phyla in all segments, followed by Verrucomicrobia, Fusobacteria, Desulfobacterota, and Actinobacteria. There were 15 genera with relative abundance > 1%, including Bacteroides, Faecalibacterium, Escherichia/Shigella, Sutterella, Akkermansia, Parabacteroides, Prevotella, Lachnoclostridium, Alistipes, Fusobacterium, Erysipelatoclostridium, and four Lachnospiraceae family members. Intra-individually, the community compositional dissimilarity was the greatest between the cecum and the rectum. There were significant differences in biodiversity and the taxonomic structure between the rectal and fecal bacteria. The bacterial community composition and structure were homogeneous across the large intestine in adults. The inter-individual variability of the bacteria was greater than inter-segment variability. The rectal and fecal bacteria differed in the community composition and structure.


Assuntos
Microbioma Gastrointestinal , Adulto , Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/microbiologia , RNA Ribossômico 16S/genética , Verrucomicrobia/genética
10.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142843

RESUMO

Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a-/- mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a-/- mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Microbiota , Nitrosaminas , Adenocarcinoma/genética , Animais , Butiratos , Carcinógenos , Disbiose/microbiologia , Inibidores do Crescimento , Humanos , Cetonas , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Nicotina , Propionatos , RNA Ribossômico 16S/genética , Receptores Acoplados a Proteínas G , Nicotiana/genética
11.
Gut ; 70(12): 2273-2282, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328245

RESUMO

OBJECTIVE: Necrotising enterocolitis (NEC) is a devastating intestinal disease primarily affecting preterm infants. The underlying mechanisms are poorly understood: mother's own breast milk (MOM) is protective, possibly relating to human milk oligosaccharide (HMO) and infant gut microbiome interplay. We investigated the interaction between HMO profiles and infant gut microbiome development and its association with NEC. DESIGN: We performed HMO profiling of MOM in a large cohort of infants with NEC (n=33) with matched controls (n=37). In a subset of 48 infants (14 with NEC), we also performed longitudinal metagenomic sequencing of infant stool (n=644). RESULTS: Concentration of a single HMO, disialyllacto-N-tetraose (DSLNT), was significantly lower in MOM received by infants with NEC compared with controls. A MOM threshold level of 241 nmol/mL had a sensitivity and specificity of 0.9 for NEC. Metagenomic sequencing before NEC onset showed significantly lower relative abundance of Bifidobacterium longum and higher relative abundance of Enterobacter cloacae in infants with NEC. Longitudinal development of the microbiome was also impacted by low MOM DSLNT associated with reduced transition into preterm gut community types dominated by Bifidobacterium spp and typically observed in older infants. Random forest analysis combining HMO and metagenome data before disease accurately classified 87.5% of infants as healthy or having NEC. CONCLUSION: These results demonstrate the importance of HMOs and gut microbiome in preterm infant health and disease. The findings offer potential targets for biomarker development, disease risk stratification and novel avenues for supplements that may prevent life-threatening disease.


Assuntos
Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Fezes/microbiologia , Leite Humano/química , Oligossacarídeos/metabolismo , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
12.
Diabetologia ; 64(5): 1079-1092, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515070

RESUMO

AIMS/HYPOTHESIS: Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS: A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS: Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION: The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION: Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Imunoterapia/métodos , Insulina/administração & dosagem , Administração Oral , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Autoanticorpos/efeitos dos fármacos , Autoanticorpos/genética , Autoimunidade/efeitos dos fármacos , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Família , Feminino , Alemanha , Humanos , Lactente , Insulina/imunologia , Masculino , Prevenção Primária/métodos
13.
Clin Infect Dis ; 72(9): 1546-1554, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32170305

RESUMO

BACKGROUND: Early-life exposures to antibiotics may increase the risk of developing childhood asthma. However, little is known about the mechanisms linking antibiotic exposures to asthma. We hypothesized that changes in the nasal airway microbiota serve as a causal mediator in the antibiotics-asthma link. METHODS: In a population-based birth-cohort study in Finland, we identified longitudinal nasal microbiota profiles during age 2-24 months using 16S rRNA gene sequencing and an unsupervised machine learning approach. We performed a causal mediation analysis to estimate the natural direct effect of systemic antibiotic treatments during age 0-11 months on risks of developing physician-diagnosed asthma by age 7 years and the natural indirect (causal mediation) effect through longitudinal changes in nasal microbiota. RESULTS: In our birth cohort of 697 children, 8.0% later developed asthma. Exposure to ≥2 antibiotic treatments during age 0-11 months was associated with a 4.0% increase in the absolute risk of developing asthma (absolute increase, 95% CI, .9-7.2%; P = .006). The unsupervised clustering approach identified 6 longitudinal nasal microbiota profiles. Infants with a larger number of antibiotic treatments had a higher risk of having a profile with early Moraxella sparsity (per each antibiotic treatment, adjusted RRR, 1.38; 95% CI, 1.15-1.66; P < .001). This effect of antibiotics on asthma was partly mediated by longitudinal changes in the nasal microbiota (natural indirect effect, P = .008), accounting for 16% of the total effect. CONCLUSIONS: Early exposures to antibiotics were associated with increased risk of asthma; the effect was mediated, in part, by longitudinal changes in the nasal airway microbiota.


Assuntos
Asma , Microbiota , Antibacterianos/efeitos adversos , Asma/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Finlândia/epidemiologia , Humanos , Lactente , Recém-Nascido , RNA Ribossômico 16S
14.
Toxicol Appl Pharmacol ; 424: 115597, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051218

RESUMO

Trichloroethene (TCE), a widely used industrial solvent, is associated with the development of autoimmune diseases (ADs), including systemic lupus erythematosus and autoimmune hepatitis. Increasing evidence support a linkage between altered gut microbiome composition and the onset of ADs. However, it is not clear how gut microbiome contributes to TCE-mediated autoimmunity, and initial triggers for microbiome-host interactions leading to systemic autoimmune responses remain unknown. To achieve this, female MRL+/+ mice were treated with 0.5 mg/ml TCE for 52 weeks and fecal samples were subjected to 16S rRNA sequencing to determine the microbiome composition. TCE exposure resulted in distinct bacterial community revealed by ß-diversity analysis. Notably, we observed reduction in Lactobacillaceae, Rikenellaceae and Bifidobacteriaceae families, and enrichment of Akkermansiaceae and Lachnospiraceae families after TCE exposure. We also observed significantly increased colonic oxidative stress and inflammatory markers (CD14 and IL-1ß), and decreased tight junction proteins (ZO-2, occludin and claudin-3). These changes were associated with increases in serum antinuclear and anti-smooth muscle antibodies and cytokines (IL-6 and IL-12), together with increased PD1 + CD4+ T cells in TCE-exposed spleen and liver tissues. Importantly, fecal microbiota transplantation (FMT) using feces from TCE-treated mice to antibiotics-treated mice induced increased anti-dsDNA antibodies and hepatic CD4+ T cell infiltration in the recipient mice. Our studies thus delineate how imbalance in gut microbiome and mucosal redox status together with gut inflammatory response and permeability changes could be the key factors in contributing to TCE-mediated ADs. Furthermore, FMT studies provide a solid support to a causal role of microbiome in TCE-mediated autoimmunity.


Assuntos
Autoimunidade/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Esquema de Medicação , Feminino , Microbioma Gastrointestinal/fisiologia , Inflamação , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Estresse Oxidativo , Baço/efeitos dos fármacos
15.
Dig Dis Sci ; 66(9): 2981-2991, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32974807

RESUMO

BACKGROUND: Systemic diseases have been associated with oral health and gut microbiota. We examined the association between oral health and the community composition and structure of the adherent colonic gut microbiota. METHODS: We obtained 197 snap-frozen colonic biopsies from 62 colonoscopy-confirmed polyp-free individuals. Microbial DNA was sequenced for the 16S rRNA V4 region using the Illumina MiSeq, and the sequences were assigned to the operational taxonomic unit based on SILVA. We used a questionnaire to ascertain tooth loss, gum disease, and lifestyle factors. We compared biodiversity and relative abundance of bacterial taxa based on the amount of tooth loss and the presence of gum disease. The multivariable negative binomial regression model for panel data was used to estimate the association between the bacterial count and oral health. False discovery rate-adjusted P value (q value) < .05 indicated statistical significance. RESULTS: More tooth loss and gum disease were associated with lower bacterial alpha diversity. The relative abundance of Faecalibacterium was lower (q values < .05) with more tooth loss. The association was significant after adjusting for age, ethnicity, obesity, smoking, alcohol use, hypertension, diabetes, and the colon segment. The relative abundance of Bacteroides was higher in those with gum disease. CONCLUSIONS: Oral health was associated with alteration in the community composition and structure of the adherent gut bacteria in the colon. The reduced anti-inflammatory Faecalibacterium in participants with more tooth loss may indicate systemic inflammation. Future studies are warranted to confirm our findings and investigate the systemic role of Faecalibacterium.


Assuntos
Colo , Inflamação , Microbiota , Doenças Periodontais , Perda de Dente , Carga Bacteriana/métodos , Biópsia/métodos , Colo/microbiologia , Colo/patologia , Correlação de Dados , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Estilo de Vida , Masculino , Microbiota/genética , Microbiota/imunologia , Pessoa de Meia-Idade , Saúde Bucal , Doenças Periodontais/diagnóstico , Doenças Periodontais/epidemiologia , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA/métodos , Perda de Dente/diagnóstico , Perda de Dente/epidemiologia
16.
Environ Health ; 20(1): 9, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468146

RESUMO

BACKGROUND: In August 2017, Hurricane Harvey caused unprecedented flooding across the greater Houston area. Given the potential for widespread flood-related exposures, including mold and sewage, and the emotional and mental toll caused by the flooding, we sought to evaluate the short- and long-term impact of flood-related exposures on the health of Houstonians. Our objectives were to assess the association of flood-related exposures with allergic symptoms and stress among Houston-area residents at two time points: within approximately 30 days (T1) and 12 months (T2) after Hurricane Harvey's landfall. METHODS: The Houston Hurricane Harvey Health (Houston-3H) Study enrolled a total of 347 unique participants from four sites across Harris County at two times: within approximately 1-month of Harvey (T1, n = 206) and approximately 12-months after Harvey (T2, n = 266), including 125 individuals who participated at both time points. Using a self-administered questionnaire, participants reported details on demographics, flood-related exposures, and health outcomes, including allergic symptoms and stress. RESULTS: The majority of participants reported hurricane-related flooding in their homes at T1 (79.1%) and T2 (87.2%) and experienced at least one allergic symptom after the hurricane (79.4% at T1 and 68.4% at T2). In general, flood-exposed individuals were at increased risk of upper respiratory tract allergic symptoms, reported at both the T1 and T2 time points, with exposures to dirty water and mold associated with increased risk of multiple allergic symptoms. The mean stress score of study participants at T1 was 8.0 ± 2.1 and at T2, 5.1 ± 3.2, on a 0-10 scale. Participants who experienced specific flood-related exposures reported higher stress scores when compared with their counterparts, especially 1 year after Harvey. Also, a supplementary paired-samples analysis showed that reports of wheezing, shortness of breath, and skin rash did not change between T1 and T2, though other conditions were less commonly reported at T2. CONCLUSION: These initial Houston-3H findings demonstrate that flooding experiences that occurred as a consequence of Hurricane Harvey had lasting impacts on the health of Houstonians up to 1 year after the hurricane.


Assuntos
Tempestades Ciclônicas , Desastres , Inundações , Hipersensibilidade/epidemiologia , Estresse Psicológico/epidemiologia , Adolescente , Adulto , Idoso , Exposição Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sociológicos , Inquéritos e Questionários , Texas/epidemiologia , Adulto Jovem
17.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32900816

RESUMO

Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.


Assuntos
Bactérias/genética , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/genética , Imunoglobulina A Secretora/análise , Adulto , Bactérias/classificação , Classificação , Diabetes Mellitus Tipo 2/imunologia , Análise Discriminante , Disbiose , Fezes/microbiologia , Feminino , Humanos , Imunoglobulina A Secretora/imunologia , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Saliva/microbiologia
18.
Pediatr Res ; 88(2): 225-233, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816621

RESUMO

BACKGROUND: The neonatal cutaneous mycobiome has not been characterized in preterm infants. Invasive fungal infections in preterm neonates are associated with high mortality. The immaturity of the preterm skin predisposes neonates to invasive infection by skin colonizers. We report the clinical and host determinants that influence the skin mycobiome. METHODS: Skin swabs from the antecubital fossa, forehead, and gluteal region of 15 preterm and 15 term neonates were obtained during the first 5 weeks of life. The mycobiome was sequenced using the conserved pan-fungal ITS2 region. Blood samples were used to genotype immune modulating genes. Clinical metadata was collected to determine the clinical predictors of the abundance and diversity of the skin mycobiome. RESULTS: The neonatal mycobiome is characterized by few taxa. Alpha diversity of the mycobiome is influenced by antibiotic exposure, the forehead body site, and the neonatal intensive care unit (NICU) environment. Beta diversity varies with mode of delivery, diet, and body site. The host determinants of the cutaneous microbiome include single-nucleotide polymorphisms in TLR4, NLRP3,CARD8, and NOD2. CONCLUSION: The neonatal cutaneous mycobiome is composed of few genera and is influenced by clinical factors and host genetics, the understanding of which will inform preventive strategies against invasive fungal infections.


Assuntos
Unidades de Terapia Intensiva Neonatal , Microbiota , Micobioma , Pele/microbiologia , Antibacterianos/farmacologia , Proteínas Adaptadoras de Sinalização CARD/genética , Feminino , Fungos/classificação , Genótipo , Humanos , Recém-Nascido Prematuro , Terapia Intensiva Neonatal , Estudos Longitudinais , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Neoplasias/genética , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Pele/metabolismo , Receptor 4 Toll-Like/genética
19.
Diabetes Obes Metab ; 22(11): 1976-1984, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32687239

RESUMO

AIM: To investigate the role of the gut microbiome in regulating key insulin homeostasis traits (insulin sensitivity, insulin secretion and insulin clearance) whose dysfunction leads to type 2 diabetes (T2D). MATERIALS AND METHODS: The Microbiome and Insulin Longitudinal Evaluation Study (MILES) focuses on African American and non-Hispanic white participants aged 40-80 years without diabetes. Three study visits are planned (at baseline, 15 and 30 months). Baseline measurements include assessment of the stool microbiome and administration of an oral glucose tolerance test, which will yield indexes of insulin sensitivity, insulin secretion and insulin clearance. The gut microbiome profile (composition and function) will be determined using whole metagenome shotgun sequencing along with analyses of plasma short chain fatty acids. Additional data collected include dietary history, sociodemographic factors, health habits, anthropometry, medical history, medications and family history. Most assessments are repeated 15 and 30 months following baseline. RESULTS: After screening 875 individuals, 129 African American and 224 non-Hispanic white participants were enrolled. At baseline, African American participants have higher blood pressure, weight, body mass index, waist and hip circumferences but similar waist-hip ratio compared with the non-Hispanic white participants. On average, African American participants are less insulin-sensitive and have higher acute insulin secretion and lower insulin clearance. CONCLUSIONS: The longitudinal design and robust characterization of potential mediators will allow for the assessment of glucose and insulin homeostasis and gut microbiota as they change over time, improving our ability to discern causal relationships between the microbiome and the insulin homeostasis traits whose deterioration determines T2D, setting the stage for future microbiome-directed therapies to prevent and treat T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Glicemia , Diabetes Mellitus Tipo 2/epidemiologia , Teste de Tolerância a Glucose , Humanos , Insulina
20.
Br J Nutr ; 124(9): 931-942, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-32475373

RESUMO

Diet has direct and indirect effects on health through inflammation and the gut microbiome. We investigated total dietary inflammatory potential via the literature-derived index (Dietary Inflammatory Index (DII®)) with gut microbiota diversity, composition and function. In cancer-free patient volunteers initially approached at colonoscopy and healthy volunteers recruited from the medical centre community, we assessed 16S ribosomal DNA in all subjects who provided dietary assessments and stool samples (n 101) and the gut metagenome in a subset of patients with residual fasting blood samples (n 34). Associations of energy-adjusted DII scores with microbial diversity and composition were examined using linear regression, permutational multivariate ANOVA and linear discriminant analysis. Spearman correlation was used to evaluate associations of species and pathways with DII and circulating inflammatory markers. Across DII levels, α- and ß-diversity did not significantly differ; however, Ruminococcus torques, Eubacterium nodatum, Acidaminococcus intestini and Clostridium leptum were more abundant in the most pro-inflammatory diet group, while Akkermansia muciniphila was enriched in the most anti-inflammatory diet group. With adjustment for age and BMI, R. torques, E. nodatum and A. intestini remained significantly associated with a more pro-inflammatory diet. In the metagenomic and fasting blood subset, A. intestini was correlated with circulating plasminogen activator inhibitor-1, a pro-inflammatory marker (rho = 0·40), but no associations remained significant upon correction for multiple testing. An index reflecting overall inflammatory potential of the diet was associated with specific microbes, but not overall diversity of the gut microbiome in our study. Findings from this preliminary study warrant further research in larger samples and prospective cohorts.


Assuntos
Dieta Saudável/estatística & dados numéricos , Dieta/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Mediadores da Inflamação/sangue , Inflamação/microbiologia , Adulto , Biomarcadores/sangue , Estudos Transversais , Inquéritos sobre Dietas , Jejum/sangue , Feminino , Voluntários Saudáveis , Humanos , Inflamação/etiologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA