RESUMO
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Assuntos
Imunidade Inata , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/patologia , Animais , Imunidade Adaptativa , Imunoterapia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Pulmão/patologia , Pulmão/imunologiaRESUMO
Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.
Assuntos
Pesquisa Biomédica , Fibrose Pulmonar Idiopática , Estados Unidos , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Lagos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/terapia , Fatores de RiscoRESUMO
Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.
Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Interleucina-33 , Ativação Linfocitária , Interleucina-33/metabolismo , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Animais , Ativação Linfocitária/imunologia , Invasividade Neoplásica , Camundongos , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , FemininoRESUMO
Rationale: The Toll-like receptor 3 Leu412Phe (TLR3 L412F) polymorphism attenuates cellular antiviral responses and is associated with accelerated disease progression in idiopathic pulmonary fibrosis (IPF). The role of TLR3 L412F in bacterial infection in IPF or in acute exacerbations (AE) has not been reported. Objectives: To characterize the association between TLR3 L412F and AE-related death in IPF. To determine the effect of TLR3 L412F on the lung microbiome and on antibacterial TLR responses of primary lung fibroblasts from patients with IPF. Methods: TLR-mediated antibacterial and antiviral responses were quantitated in L412F wild-type and 412F-heterozygous primary lung fibroblasts from patients with IPF using ELISA, Western blot analysis, and quantitative PCR. Hierarchical heatmap analysis was employed to establish bacterial and viral clustering in nasopharyngeal lavage samples from patients with AE-IPF. 16S ribosomal RNA quantitative PCR and pyrosequencing were used to determine the effect of TLR3 L412F on the IPF lung microbiome. Measurements and Main Results: A significant increase in AE-related death in patients with 412F-variant IPF was reported. We established that 412F-heterozygous IPF lung fibroblasts have reduced antibacterial TLR responses to LPS (TLR4), Pam3CYSK4 (TLR1/2), flagellin (TLR5), and FSL-1 (TLR6/1) and have reduced responses to live Pseudomonas aeruginosa infection. Using 16S ribosomal RNA sequencing, we demonstrated that 412F-heterozygous patients with IPF have a dysregulated lung microbiome with increased frequencies of Streptococcus and Staphylococcus spp. Conclusions: This study reveals that TLR3 L412F dysregulates the IPF lung microbiome and reduces the responses of IPF lung fibroblasts to bacterial TLR agonists and live bacterial infection. These findings identify a candidate role for TLR3 L412F in viral- and bacterial-mediated AE death.
Assuntos
Fibrose Pulmonar Idiopática , Receptor 3 Toll-Like/genética , Antibacterianos , Antivirais , Progressão da Doença , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/microbiologia , RNA Ribossômico 16SRESUMO
Rationale: Aberrant lung remodeling in idiopathic pulmonary fibrosis (IPF) is characterized by elevated MMP9 (matrix metalloproteinase 9) expression, but the precise role of this matrix metalloproteinase in this disease has yet to be fully elucidated.Objectives: To evaluate antifibrotic effects of MMP9 inhibition on IPF.Methods: Quantitative genomic, proteomic, and functional analyses both in vitro and in vivo were used to determine MMP9 expression in IPF cells and the effects of MMP9 inhibition on profibrotic mechanisms.Measurements and Main Results: In the present study, we demonstrate that MMP9 expression was increased in airway basal cell (ABC)-like cells from IPF lungs compared with ABC cells from normal lungs. The inhibition of MMP9 activity with an anti-MMP9 antibody, andecaliximab, blocked TGF-ß1 (transforming growth factor ß1)-induced Smad2 phosphorylation. However, in a subset of cells from patients with IPF, TGF-ß1 activation in their ABC-like cells was unaffected or enhanced by MMP9 blockade (i.e., nonresponders). Further analysis of nonresponder ABC-like cells treated with andecaliximab revealed an association with type 1 IFN expression, and the addition of IFNα to these cells modulated both MMP9 expression and TGF-ß1 activation. Finally, the inhibition of MMP9 ameliorated pulmonary fibrosis induced by responder lung cells but not a nonresponder in a humanized immunodeficient mouse model of IPF.Conclusions: Together, these data demonstrate that MMP9 regulates the activation of ABC-like cells in IPF and that targeting this MMP might be beneficial to a subset of patients with IPF who show sufficient expression of type 1 IFNs.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Animais , Anticorpos Monoclonais Humanizados/metabolismo , California/epidemiologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Michigan/epidemiologia , Modelos Animais , Proteômica , Estados UnidosRESUMO
Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.
Assuntos
Plasticidade Celular , Proliferação de Células/genética , Autorrenovação Celular/genética , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/genética , Mucosa Respiratória/citologia , Idoso , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Membrana Basal , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Pessoa de Meia-Idade , RNA-Seq , Mucosa Respiratória/metabolismo , Análise de Célula Única , Transcriptoma , Adulto JovemRESUMO
Stem cell factor (SCF) and its receptor c-kit have been implicated in inflammation, tissue remodeling, and fibrosis. Ingenuity Integrated Pathway Analysis of gene expression array data sets showed an upregulation of SCF transcripts in idiopathic pulmonary fibrosis (IPF) lung biopsies compared with tissue from nonfibrotic lungs that are further increased in rapid progressive disease. SCF248, a cleavable isoform of SCF, was abundantly and preferentially expressed in human lung fibroblasts and fibrotic mouse lungs relative to the SCF220 isoform. In fibroblast-mast cell coculture studies, blockade of SCF248 using a novel isoform-specific anti-SCF248 monoclonal antibody (anti-SCF248), attenuated the expression of COL1A1, COL3A1, and FN1 transcripts in cocultured IPF but not normal lung fibroblasts. Administration of anti-SCF248 on days 8 and 12 after bleomycin instillation in mice significantly reduced fibrotic lung remodeling and col1al, fn1, acta2, tgfb, and ccl2 transcript expression. In addition, bleomycin increased numbers of c-kit+ mast cells, eosinophils, and ILC2 in lungs of mice, whereas they were not significantly increased in anti-SCF248-treated animals. Finally, mesenchymal cell-specific deletion of SCF significantly attenuated bleomycin-mediated lung fibrosis and associated fibrotic gene expression. Collectively, these data demonstrate that SCF is upregulated in diseased IPF lungs and blocking SCF248 isoform significantly ameliorates fibrotic lung remodeling in vivo suggesting that it may be a therapeutic target for fibrotic lung diseases.
Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Isoformas de Proteínas/metabolismo , Fator de Células-Tronco/metabolismo , Animais , Bleomicina/farmacologia , Contagem de Células/métodos , Células Cultivadas , Técnicas de Cocultura/métodos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.
Assuntos
Basidiomycota/imunologia , Basidiomycota/patogenicidade , Microbioma Gastrointestinal/imunologia , Micobioma/imunologia , Hipersensibilidade Respiratória/etiologia , Alérgenos/administração & dosagem , Animais , Antibacterianos/efeitos adversos , Antígenos de Dermatophagoides/administração & dosagem , Basidiomycota/crescimento & desenvolvimento , Modelos Animais de Doenças , Microbiologia Ambiental , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Vida Livre de Germes/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Micobioma/genética , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/microbiologia , Simbiose/imunologiaRESUMO
Although cellular senescence may be a protective mechanism in modulating proliferative capacity, fibroblast senescence is now recognized as a key pathogenic mechanism in idiopathic pulmonary fibrosis (IPF). In aged mice, abundance and persistence of apoptosis-resistant senescent fibroblasts play a central role in nonresolving lung fibrosis after bleomycin challenge. Therefore, we investigated whether quercetin can restore the susceptibility of senescent IPF fibroblasts to proapoptotic stimuli and mitigate bleomycin-induced pulmonary fibrosis in aged mice. Unlike senescent normal lung fibroblasts, IPF lung fibroblasts from patients with stable and rapidly progressing disease were highly resistant to Fas ligand (FasL)-induced and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Senescent IPF fibroblasts exhibited decreased expression of FasL and TRAIL receptors and caveolin-1, as well as increased AKT activation, compared with senescent normal lung fibroblasts. Although quercetin alone was not proapoptotic, it abolished the resistance to FasL- or TRAIL-induced apoptosis in IPF fibroblasts. Mechanistically, quercetin upregulated FasL receptor and caveolin-1 expression and modulated AKT activation. In vivo quercetin reversed bleomycin-induced pulmonary fibrosis and attenuated lethality, weight loss, and the expression of pulmonary senescence markers p21 and p19-ARF and senescence-associated secretory phenotype in aged mice. Collectively, these data indicate that quercetin reverses the resistance to death ligand-induced apoptosis by promoting FasL receptor and caveolin-1 expression and inhibiting AKT activation, thus mitigating the progression of established pulmonary fibrosis in aged mice. Therefore, quercetin may be a viable therapeutic option for IPF and other age-related diseases that progress with the accumulation of senescent fibroblasts.
Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Quercetina/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors, which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless, mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling, but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models, initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID γ mice. Unlike cells from normal lung samples, IPF cells promote persistent, nonresolving lung remodeling in SCID mice. Finally, we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
Assuntos
Fibrose Pulmonar Idiopática/patologia , Animais , Anticorpos Neutralizantes/farmacologia , Benzilaminas , Ciclamos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-13/metabolismo , Pulmão/patologia , Camundongos SCID , Fenótipo , Receptores CXCR4/metabolismo , Receptores de Interleucina-4/metabolismoRESUMO
Syndecan-1 is a transmembrane proteoglycan expressed prominently by lung epithelium and has pleiotropic functions such as regulating cell migration, proliferation, and survival. Loss of syndecan-1 expression by lung cancer cells is associated with higher-grade cancers and worse clinical prognosis. We evaluated the effects of syndecan-1 in various cell-based and animal models of lung cancer and found that lung tumorigenesis was moderated by syndecan-1. We also demonstrate that syndecan-1 (or lack thereof) alters the miRNA cargo carried within exosomes exported from lung cancer cells. Analysis of the changes in miRNA expression identified a distinct shift toward augmented procancer signaling consistent with the changes found in lung adenocarcinoma. Collectively, our work identifies syndecan-1 as an important factor in lung cancer cells that shapes the tumor microenvironment through alterations in miRNA packaging within exosomes.
Assuntos
Carcinogênese/metabolismo , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Sindecana-1/metabolismo , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Proliferação de Células , Regulação para Baixo/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/metabolismo , Análise de Sobrevida , Regulação para Cima/genéticaRESUMO
RATIONALE: Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. OBJECTIVES: To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. METHODS: Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. MEASUREMENTS AND MAIN RESULTS: Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. CONCLUSIONS: Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Antibióticos Antineoplásicos/uso terapêutico , Bleomicina/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Proteínas de Membrana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proto-Oncogene Mas , Transdução de Sinais/genéticaRESUMO
BACKGROUND: Recent studies have highlighted the contribution of senescent mesenchymal and epithelial cells in Idiopathic Pulmonary Fibrosis (IPF), but little is known regarding the molecular mechanisms that regulate the accumulation of senescent cells in this disease. Therefore, we addressed the hypothesis that the loss of DNA repair mechanisms mediated by DNA protein kinase catalytic subunit (DNA-PKcs) in IPF, promoted the accumulation of mesenchymal progenitors and progeny, and the expression of senescent markers by these cell types. METHODS: Surgical lung biopsy samples and lung fibroblasts were obtained from patients exhibiting slowly, rapidly or unknown progressing IPF and lung samples lacking any evidence of fibrotic disease (i.e. normal; NL). The expression of DNA-Pkcs in lung tissue was assessed by quantitative immunohistochemical analysis. Chronic inhibition of DNA-PKcs kinase activity was mimicked using a highly specific small molecule inhibitor, Nu7441. Proteins involved in DNA repair (stage-specific embryonic antigen (SSEA)-4+ cells) were determined by quantitative Ingenuity Pathway Analysis of transcriptomic datasets (GSE103488). Lastly, the loss of DNA-PKc was modeled in a humanized model of pulmonary fibrosis in NSG SCID mice genetically deficient in PRKDC (the transcript for DNA-PKcs) and treated with Nu7441. RESULTS: DNA-PKcs expression was significantly reduced in IPF lung tissues. Chronic inhibition of DNA-PKcs by Nu7441 promoted the proliferation of SSEA4+ mesenchymal progenitor cells and a significant increase in the expression of senescence-associated markers in cultured lung fibroblasts. Importantly, mesenchymal progenitor cells and their fibroblast progeny derived from IPF patients showed a loss of transcripts encoding for DNA damage response and DNA repair components. Further, there was a significant reduction in transcripts encoding for PRKDC (the transcript for DNA-PKcs) in SSEA4+ mesenchymal progenitor cells from IPF patients compared with normal lung donors. In SCID mice lacking DNA-PKcs activity receiving IPF lung explant cells, treatment with Nu7441 promoted the expansion of progenitor cells, which was observed as a mass of SSEA4+ CgA+ expressing cells. CONCLUSIONS: Together, our results show that the loss of DNA-PKcs promotes the expansion of SSEA4+ mesenchymal progenitors, and the senescence of their mesenchymal progeny.
Assuntos
Senescência Celular/genética , Cromonas/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Fibrose Pulmonar Idiopática/tratamento farmacológico , Células-Tronco Mesenquimais/citologia , Morfolinas/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/patologia , Camundongos , Camundongos SCIDRESUMO
Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications.
Assuntos
Senescência Celular , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Mitocôndrias/patologia , Acetilcisteína/farmacologia , Biomarcadores/metabolismo , Senescência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Etoposídeo/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Rotenona/farmacologia , Sirolimo/farmacologiaRESUMO
Recent evidence indicates that nonprofessional immune cells such as epithelial cells, endothelial cells, and fibroblasts also contribute to innate immunity via secretion of cytokines. Fibroblasts are the principal type of cell found in the periodontal connective tissues and they are involved in the immune response during periodontal disease. The role of fibroblasts in the recognition of pathogens via Toll-like receptors (TLRs) has been established; however, few studies have been conducted concerning the involvement of innate immune receptors in the recognition of Candida albicans by gingival fibroblast. In the current study, we investigate the functional activity of TLR2, cluster of differentiation 14 (CD14), and myeloid differentiation primary response gene 88 (MyD88) molecules in the recognition of C. albicans by gingival fibroblast. First, we identified that gingival fibroblasts expressed TLR2, TLR3, and TLR4. Our results showed that TLR agonists had no effect on these receptors' expression by TLR2, MyD88, and CD14-deficient cells. Notably, C. albicans and a synthetic triacylated lipoprotein (Pam3CSK4) induced a remarkable increase of TLR3 expression on MyD88-deficient gingival fibroblasts. TLR4 expression levels were lower than TLR2 and TLR3 levels and remained unchanged after TLR agonist stimulation. Gingival fibroblasts presented morphological similarities; however, TLR2 deficiency on these cells leads to a lower proliferative response, whereas the deficiency on CD14 expression resulted in lower levels of type I collagen by these cells. In addition, the recognition of C. albicans by gingival fibroblasts had an effect on the secretion of cytokines and it was dependent on a specific recognition molecule. Specifically, tumor necrosis factor-α (TNF-α) production after the recognition of C. albicans was dependent on MyD88, CD14, and TLR2 molecules, whereas the production of interleukin-1ß (IL-1ß) and IL-13 was dependent on TLR2. These findings are the first to describe a role of gingival fibroblast in the recognition of C. albicans and the pathways involved in this process. An understanding of these pathways may lead to alternative treatments for patients with periodontal disease.
Assuntos
Candida albicans/metabolismo , Fibroblastos/microbiologia , Gengiva/microbiologia , Receptores de Lipopolissacarídeos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Imunidade Inata , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
RATIONALE: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. OBJECTIVES: To explore the host immune response and microbial interaction in IPF as they relate to progression-free survival (PFS), fibroblast function, and leukocyte phenotypes. METHODS: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET-IPF (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll-like receptor 9 (TLR9) stimulation by CpG-oligodeoxynucleotide (CpG-ODN) was integrated into microbiome-gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Down-regulation of immune response pathways, including nucleotide-binding oligomerization domain (NOD)-, Toll-, and RIG1-like receptor pathways, was associated with worse PFS. Ten of the 11 PFS-associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD-like receptor signaling. In a network analysis, expression of up-regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG-ODN stimulation. The expression of TLR signaling pathways was also linked to CpG-ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C-X-C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). CONCLUSIONS: These findings suggest that host-microbiome interactions influence PFS and fibroblast responsiveness.
Assuntos
Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/microbiologia , Imunidade Inata/imunologia , Microbiota/imunologia , Lavagem Broncoalveolar , Intervalo Livre de Doença , Regulação para Baixo/imunologia , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-IdadeRESUMO
Idiopathic pulmonary fibrosis (IPF) is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. In the present study, the expression of tumor necrosis factor- (TNF-) related apoptosis-inducing ligand (TRAIL) was key to the resolution of bleomycin-induced pulmonary fibrosis. Both in vivo and in vitro studies demonstrated that Gr-1+TRAIL+ bone marrow-derived myeloid cells blocked the activation of lung myofibroblasts. Although soluble TRAIL was increased in plasma from IPF patients, the presence of TRAIL+ myeloid cells was markedly reduced in IPF lung biopsies, and primary lung fibroblasts from this patient group expressed little of the TRAIL receptor-2 (DR5) when compared with appropriate normal samples. IL-13 was a potent inhibitor of DR5 expression in normal fibroblasts. Together, these results identified TRAIL+ myeloid cells as a critical mechanism in the resolution of pulmonary fibrosis, and strategies directed at promoting its function might have therapeutic potential in IPF.
Assuntos
Fibrose Pulmonar/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Fibroblastos/imunologia , Fibroblastos/metabolismo , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fibrose Pulmonar/imunologia , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Previous studies described that allergic diseases, including asthma, occur less often than expected in patients with type 1 diabetes. Here, we investigated the influence of diabetes on allergic airway inflammation in a model of experimental asthma in mice. Diabetes was induced by intravenous injection of alloxan into 12 h-fasted A/J mice, followed by subcutaneous sensitization with ovalbumin (OVA) and aluminum hydroxide (Al(OH)3), on days 5 and 19 after diabetes induction. Animals were intranasally challenged with OVA (25 µg), from day 24 to day 26. Alloxan-induced diabetes significantly attenuated airway inflammation as attested by the lower number of total leukocytes in the bronchoalveolar lavage fluid, mainly neutrophils and eosinophils. Suppression of eosinophil infiltration in the peribronchiolar space and generation of eosinophilotactic mediators, such as CCL-11/eotaxin, CCL-3/MIP-1α, and IL-5, were noted in the lungs of diabetic sensitized mice. In parallel, reduction of airway hyperreactivity (AHR) to methacholine, mucus production, and serum IgE levels was also noted under diabetic conditions. Our findings show that alloxan diabetes caused attenuation of lung allergic inflammatory response in A/J mice, by a mechanism possibly associated with downregulation of IgE antibody production.