Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 868-879, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318484

RESUMO

Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.


Assuntos
Helianthus , Polinização , Flores , Pólen , Temperatura
2.
Plant Cell Environ ; 43(9): 2224-2238, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542798

RESUMO

The ratio of red light to far-red light (R:FR) is perceived by phytochrome B (phyB) and informs plants of nearby competition. A low R:FR indicative of competition induces the shade avoidance syndrome and suppresses branching by incompletely understood mechanisms. Phytochrome interacting factors (PIFs) are transcription factors targeted by phytochromes to evoke photomorphogenic responses. PIF4 and PIF5 promote shade avoidance responses and become inactivated by direct interaction with active phyB in the nucleus. Here, genetic and physiological assays show that PIF4 and PIF5 contribute to the suppression of branching resulting from phyB loss of function and a low R:FR, although roles for other PIFs or pathways may exist. The suppression of branching is associated with PIF4/PIF5 promotion of the expression of the branching inhibitor BRANCHED 1 and abscisic acid (ABA) accumulation in axillary buds and is dependent on the function of the key ABA biosynthetic enzyme Nine-cis-epoxycarotenoid dioxygenase 3. However, PIF4/PIF5 function is not confined to a single hormonal pathway, as they also promote stem indole-3-acetic acid accumulation and stimulate systemic auxin signalling, which contribute to the suppression of bud growth when phyB is inactive.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luz , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Exp Bot ; 68(5): 943-952, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062593

RESUMO

Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Fitocromo B/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação
4.
Plant Physiol ; 163(2): 1047-58, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23929720

RESUMO

Low red light/far-red light ratio (R:FR) serves as an indicator of impending competition and has been demonstrated to suppress branch development. The regulation of Arabidopsis (Arabidopsis thaliana) rosette bud outgrowth by the R:FR and the associated mechanisms were investigated at several levels. Growth under low R:FR suppressed outgrowth of the third from topmost bud (bud n-2) but not that of the topmost bud. Subsequently increasing the R:FR near the time of anthesis promoted bud n-2 outgrowth and reduced topmost bud growth. Buds from specific rosette positions, exhibiting divergent fates to increased R:FR, were harvested 3 h after modifying the R:FR and were used to conduct ATH1 microarray-based transcriptome profiling. Differentially expressed genes showed enrichment of light signaling and hormone-related Gene Ontology terms and promoter motifs, most notably those associated with abscisic acid (ABA). Genes associated with ABA biosynthesis, including the key biosynthetic gene NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 (NCED3), and with ABA signaling were expressed at higher levels in the responsive bud n-2, and increasing the R:FR decreased their expression only in bud n-2. ABA abundance in responsive buds decreased within 12 h of increasing the R:FR, while indole-3-acetic acid levels did not change. A role for ABA in repressing bud outgrowth from lower positions under low R:FR was demonstrated using the nced3-2 and aba2-1 ABA biosynthesis mutants, which showed enhanced branching and a defective bud n-2 outgrowth response to low R:FR. The results provide evidence that ABA regulates bud outgrowth responses to the R:FR and thus extend the known hormonal pathways associated with the regulation of branching and shade avoidance.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Luz , Ácido Abscísico/biossíntese , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Ecótipo , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Transdução de Sinal Luminoso/efeitos dos fármacos , Transdução de Sinal Luminoso/efeitos da radiação , Fenótipo
5.
Elife ; 112022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040432

RESUMO

Variation in floral displays, both between and within species, has been long known to be shaped by the mutualistic interactions that plants establish with their pollinators. However, increasing evidence suggests that abiotic selection pressures influence floral diversity as well. Here, we analyse the genetic and environmental factors that underlie patterns of floral pigmentation in wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye, they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most pollinators. We show that this diversity is largely controlled by cis-regulatory variation affecting a single MYB transcription factor, HaMYB111, through accumulation of ultraviolet (UV)-absorbing flavonol glycosides in ligules (the 'petals' of sunflower inflorescences). Different patterns of ultraviolet pigments in flowers are strongly correlated with pollinator preferences. Furthermore, variation for floral ultraviolet patterns is associated with environmental variables, especially relative humidity, across populations of wild sunflowers. Ligules with larger ultraviolet patterns, which are found in drier environments, show increased resistance to desiccation, suggesting a role in reducing water loss. The dual role of floral UV patterns in pollinator attraction and abiotic response reveals the complex adaptive balance underlying the evolution of floral traits.


Flowers are an important part of how many plants reproduce. Their distinctive colours, shapes and patterns attract specific pollinators, but they can also help to protect the plant from predators and environmental stresses. Many flowers contain pigments that absorb ultraviolet (UV) light to display distinct UV patterns ­ although invisible to the human eye, most pollinators are able to see them. For example, when seen in UV, sunflowers feature a 'bullseye' with a dark centre surrounded by a reflective outer ring. The sizes and thicknesses of these rings vary a lot within and between flower species, and so far, it has been unclear what causes this variation and how it affects the plants. To find out more, Todesco et al. studied the UV patterns in various wild sunflowers across North America by considering the ecology and molecular biology of different plants. This revealed great variation between the UV patterns of the different sunflower populations. Moreover, Todesco et al. found that a gene called HaMYB111 is responsible for the diverse UV patterns in the sunflowers. This gene controls how plants make chemicals called flavonols that absorb UV light. Flavonols also help to protect plants from damage caused by droughts and extreme temperatures. Todesco et al. showed that plants with larger bullseyes had more flavonols, attracted more pollinators, and were better at conserving water. Accordingly, these plants were found in drier locations. This study suggests that, at least in sunflowers, UV patterns help both to attract pollinators and to control water loss. These insights could help to improve pollination ­ and consequently yield ­ in cultivated plants, and to develop plants with better resistance to extreme weather. This work also highlights the importance of combining biology on small and large scales to understand complex processes, such as adaptation and evolution.


Assuntos
Adaptação Fisiológica , Helianthus/genética , Helianthus/fisiologia , Pigmentação/genética , Raios Ultravioleta , Flavonóis/metabolismo , Flavonóis/efeitos da radiação , Fenótipo , Polinização
6.
Curr Biol ; 30(5): 802-814.e8, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155414

RESUMO

Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.


Assuntos
Mimulus/fisiologia , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição/genética , Mimulus/genética , Pigmentação/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição/metabolismo
7.
Plant Signal Behav ; 9(3): e28668, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24713589

RESUMO

The ratio of Red to Far Red light (R:FR) is sensed by phytochromes, including phytochrome B, and serves as a signal of potential competition. Low R:FR represses Arabidopsis thaliana branching by promoting the accumulation of abscisic acid in the young buds and by enhancing auxin signaling in the main shoot. While overall plant level branching is reduced by low R:FR, the growth of the uppermost branches tends to be promoted while the lower buds are suppressed. Buds at intermediate positions can show either growth promotion or growth suppression by low R:FR if they become exposed to low R:FR late or early, respectively. This pattern suggests that developmental stage specific programming occurs to modify the response of specific buds to branching regulators including auxin and ABA.


Assuntos
Arabidopsis/efeitos da radiação , Brotos de Planta/efeitos da radiação , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
8.
J Plant Physiol ; 171(14): 1289-98, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014264

RESUMO

Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas/genética , Estresse Fisiológico , Transcriptoma , Triticum/genética , Adaptação Biológica , Secas , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Triticum/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA