Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(23): 6034-6039, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533364

RESUMO

Crystal structures of enzymes are indispensable to understanding their mechanisms on a molecular level. It, however, remains challenging to determine which structures are adopted in solution, especially for dynamic complexes. Here, we study the bilobed decapping enzyme Dcp2 that removes the 5' cap structure from eukaryotic mRNA and thereby efficiently terminates gene expression. The numerous Dcp2 structures can be grouped into six states where the domain orientation between the catalytic and regulatory domains significantly differs. Despite this wealth of structural information it is not possible to correlate these states with the catalytic cycle or the activity of the enzyme. Using methyl transverse relaxation-optimized NMR spectroscopy, we demonstrate that only three of the six domain orientations are present in solution, where Dcp2 adopts an open, a closed, or a catalytically active state. We show how mRNA substrate and the activator proteins Dcp1 and Edc1 influence the dynamic equilibria between these states and how this modulates catalytic activity. Importantly, the active state of the complex is only stably formed in the presence of both activators and the mRNA substrate or the m7GDP decapping product, which we rationalize based on a crystal structure of the Dcp1:Dcp2:Edc1:m7GDP complex. Interestingly, we find that the activating mechanisms in Dcp2 also result in a shift of the substrate specificity from bacterial to eukaryotic mRNA.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Endorribonucleases/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica , Proteínas de Ligação ao Cap de RNA/química , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/metabolismo
2.
Biochem J ; 437(1): 149-55, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466505

RESUMO

A cpSRP [chloroplast SRP (signal recognition particle)] comprising cpSRP54 and cpSRP43 subunits mediates the insertion of light-harvesting proteins into the thylakoid membrane. We dissected its interaction with a full-length membrane protein substrate in aqueous solution by insertion of site-specific photo-activatable cross-linkers into in vitro-synthesized Lhcb1 (major light-harvesting chlorophyll-binding protein of photosystem II). We show that Lhcb1 residues 166-176 cross-link specifically to the cpSRP43 subunit. Some cross-link positions within Lhcb1 are in the 'L18' peptide required for targeting of cpSRP substrates, whereas other cross-linking positions define a new targeting signal in the third transmembrane span. Lhcb1 was not found to cross-link to cpSRP54 at any position, and cross-linking to cpSRP43 is unaffected by the absence of cpSRP54. cpSRP43 thus effectively binds substrates autonomously, and its ability to independently bind an extended 20+-residue substrate region highlights a major difference with other SRP types where the SRP54 subunit binds to hydrophobic target sequences. The results also show that cpSRP43 can bind to a hydrophobic, three-membrane span, substrate in aqueous solution, presumably reflecting a role for cpSRP in the chloroplast stroma. This mode of action, and the specificity of the cpSRP43-substrate interaction, may be associated with cpSRP's unique post-translational mode of action.


Assuntos
Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Plantas/química , Conformação Proteica , Estrutura Terciária de Proteína , Soluções/metabolismo
3.
Biochem J ; 416(2): 289-96, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18637791

RESUMO

Recent studies with the high-tillering mutants in rice (Oryza sativa), the max (more axillary growth) mutants in Arabidopsis thaliana and the rms (ramosus) mutants in pea (Pisum sativum) have indicated the presence of a novel plant hormone that inhibits branching in an auxin-dependent manner. The synthesis of this inhibitor is initiated by the two CCDs [carotenoid-cleaving (di)oxygenases] OsCCD7/OsCCD8b, MAX3/MAX4 and RMS5/RMS1 in rice, Arabidopsis and pea respectively. MAX3 and MAX4 are thought to catalyse the successive cleavage of a carotenoid substrate yielding an apocarotenoid that, possibly after further modification, inhibits the outgrowth of axillary buds. To elucidate the substrate specificity of OsCCD8b, MAX4 and RMS1, we investigated their activities in vitro using naturally accumulated carotenoids and synthetic apocarotenoid substrates, and in vivo using carotenoid-accumulating Escherichia coli strains. The results obtained suggest that these enzymes are highly specific, converting the C27 compounds beta-apo-10'-carotenal and its alcohol into beta-apo-13-carotenone in vitro. Our data suggest that the second cleavage step in the biosynthesis of the plant branching inhibitor is conserved in monocotyledonous and dicotyledonous species.


Assuntos
Oxigenases/genética , Oxigenases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Carotenoides/biossíntese , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Amplificação de Genes , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Pisum sativum/enzimologia , Pisum sativum/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plasmídeos , Especificidade por Substrato
4.
FEBS Lett ; 581(29): 5671-6, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18022392

RESUMO

Two GTPases in the signal recognition particle and its receptor (FtsY) regulate protein targeting to the membrane by formation of a heterodimeric complex. The activation of both GTPases in the complex is essential for protein translocation. We present the crystal structure of chloroplast FtsY (cpFtsY) at 1.75 A resolution. The comparison with FtsY structures in different nucleotide bound states shows structural changes relevant for GTPase activation and provides insights in how cpFtsY is pre-organized for complex formation with cpSRP54. The structure contains an amino-terminal amphipathic helix similar to the membrane targeting sequence of Escherichia coli FtsY. In cpFtsY this motif is extended, which might be responsible for the enhanced attachment of the protein to the thylakoid membrane.


Assuntos
Proteínas de Arabidopsis/química , Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/química , Proteínas de Membrana/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Proteínas de Cloroplastos , Sequência Conservada , Cristalografia por Raios X , GTP Fosfo-Hidrolases/metabolismo , Malonatos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo
5.
Nat Commun ; 5: 3491, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24662372

RESUMO

During eukaryotic ribosome biogenesis, nascent ribosomal RNA (rRNA) forms pre-ribosomal particles containing ribosomal proteins and assembly factors. Subsequently, these immature rRNAs are processed and remodelled. Little is known about the premature assembly states of rRNAs and their structural rearrangement during ribosome biogenesis. Using cryo-EM we characterize a pre-60S particle, where the 5S rRNA and its associated ribosomal proteins L18 and L5 (5S ribonucleoprotein (RNP)) are rotated by almost 180° when compared with the mature subunit. Consequently, neighbouring 25S rRNA helices that protrude from the base of the central protuberance are deformed. This altered topology is stabilized by nearby assembly factors (Rsa4 and Nog1), which were identified by fitting their three-dimensional structures into the cryo-EM density. We suggest that the 5S RNP performs a semicircular movement during 60S biogenesis to adopt its final position, fulfilling a chaperone-like function in guiding the flanking 25S rRNA helices of the central protuberance to their final topology.


Assuntos
Vias Biossintéticas/fisiologia , Modelos Moleculares , Ribonucleoproteínas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/fisiologia , Rotação , Western Blotting , Biologia Computacional , Microscopia Crioeletrônica , Cristalização , Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cell Biol ; 207(4): 481-98, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404745

RESUMO

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a "distribution box," transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


Assuntos
RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
7.
Nat Struct Mol Biol ; 19(2): 260-3, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231402

RESUMO

Chromodomains typically recruit protein complexes to chromatin and read the epigenetic histone code by recognizing lysine methylation in histone tails. We report the crystal structure of the chloroplast signal recognition particle (cpSRP) core from Arabidopsis thaliana, with the cpSRP54 tail comprising an arginine-rich motif bound to the second chromodomain of cpSRP43. A twinned aromatic cage reads out two neighboring nonmethylated arginines and adapts chromodomains to a non-nuclear function in post-translational targeting.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Arginina/metabolismo , Proteínas de Ligação ao GTP/química , Multimerização Proteica , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Cristalografia por Raios X , Proteínas de Ligação ao GTP/metabolismo , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Partícula de Reconhecimento de Sinal/metabolismo
9.
Science ; 321(5886): 253-6, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18621669

RESUMO

Secretory and membrane proteins carry amino-terminal signal sequences that, in cotranslational targeting, are recognized by the signal recognition particle protein SRP54 without sequence specificity. The most abundant membrane proteins on Earth are the light-harvesting chlorophyll a/b binding proteins (LHCPs). They are synthesized in the cytoplasm, imported into the chloroplast, and posttranslationally targeted to the thylakoid membrane by cpSRP, a heterodimer formed by cpSRP54 and cpSRP43. We present the 1.5 angstrom crystal structure of cpSRP43 characterized by a unique arrangement of chromodomains and ankyrin repeats. The overall shape and charge distribution of cpSRP43 resembles the SRP RNA, which is absent in chloroplasts. The complex with the internal signal sequence of LHCPs reveals that cpSRP43 specifically recognizes a DPLG peptide motif. We describe how cpSPR43 adapts the universally conserved SRP system to posttranslational targeting and insertion of the LHCP family of membrane proteins.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Repetição de Anquirina , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Calorimetria , Proteínas de Cloroplastos , Cristalografia por Raios X , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Complexos de Proteínas Captadores de Luz/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA de Plantas/química , RNA de Plantas/metabolismo , Tilacoides/metabolismo
10.
Mol Genet Genomics ; 278(5): 527-37, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17610084

RESUMO

Torulene, a C(40) carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C(35) xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C(35) apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce beta-apo-4'-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of gamma-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.


Assuntos
Carotenoides/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora/metabolismo , Sequência de Aminoácidos , Carotenoides/química , Proteínas Fúngicas , Genoma Fúngico , Luz , Modelos Químicos , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Oxigenases/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA