Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 116(11-12): 2267-2279, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695978

RESUMO

INTRODUCTION: Inorganic nitrate ingestion has been posited to affect arterial blood pressure and vascular function. PURPOSE: We sought to determine the acute effect of a red spinach extract (RSE) high in inorganic nitrate on vascular reactivity 1-h after ingestion in peripheral conduit and resistance arteries. METHODS: Fifteen (n = 15; males 8, females 7) apparently healthy subjects (aged 23.1 ± 3.3 years; BMI 27.2 ± 3.7 kg/m2) participated in this crossover design, double-blinded study. Subjects reported to the lab ≥2-h post-prandial and consumed RSE (1000 mg dose; ~90 mg nitrate) or placebo (PBO). Venipuncture was performed on three occasions: baseline, 30-min post-ingestion and between 65 to 75-min post-ingestion. Baseline vascular measurements [i.e., calf venous occlusion plethysmography, brachial artery flow-mediated dilation (FMD)], 30-min of continuous blood pressure (BP) and heart rate (HR) analysis, and follow-up vascular measurements beginning at 40-min post-ingestion were also performed. RESULTS: Humoral nitrate following RSE ingestion was significantly higher at 30- (+54 %; P = 0.039) and 65 to 75-min post-ingestion compared to baseline (+255 %, P < 0.001) and PBO at the same time points (P < 0.05). No significant changes in BP or HR occurred in either condition. Peak reactive hyperemia (RH) calf blood flow increased significantly (+13.7 %; P = 0.016) following RSE ingestion, whereas it decreased (-14.0 %; P = 0.008) following PBO ingestion. No significant differential FMD responses were detected (P > 0.05), though RH was decreased following the baseline measure in both conditions. CONCLUSIONS: RSE significantly increased plasma nitrate 30-min post-ingestion, but acute microvascular (i.e., resistance vasculature) reactivity increases were isolated to the lower limb and no appreciable change in brachial artery FMD was observed.


Assuntos
Pressão Sanguínea/fisiologia , Artéria Braquial/efeitos dos fármacos , Nitratos/administração & dosagem , Spinacia oleracea/química , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Administração Oral , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Artéria Braquial/fisiologia , Feminino , Humanos , Masculino , Nitratos/sangue , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adulto Jovem
2.
Sports (Basel) ; 5(4)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29910440

RESUMO

Background: We examined the acute effect of a red spinach extract (RSE) (1000 mg dose; ~90 mg nitrate (NO 3 - )) on performance markers during graded exercise testing (GXT). Methods: For this randomized, double-blind, placebo (PBO)-controlled, crossover study, 15 recreationally-active participants (aged 23.1 ± 3.3 years; BMI: 27.2 ± 3.7 kg/m²) reported >2 h post-prandial and performed GXT 65⁻75 min post-RSE or PBO ingestion. Blood samples were collected at baseline (BL), pre-GXT (65⁻75 min post-ingestion; PRE), and immediately post-GXT (POST). GXT commenced with continuous analysis of expired gases. Results: Plasma concentrations of NO 3 - increased PRE (+447 ± 294%; p < 0.001) and POST (+378 ± 179%; p < 0.001) GXT with RSE, but not with PBO (+3 ± 26%, -8 ± 24%, respectively; p > 0.05). No effect on circulating nitrite (NO 2 - ) was observed with RSE (+3.3 ± 7.5%, +7.7 ± 11.8% PRE and POST, respectively; p > 0.05) or PBO (-0.5 ± 7.9%, -0.2 ± 8.1% PRE and POST, respectively; p > 0.05). When compared to PBO, there was a moderate effect of RSE on plasma NO 2 - at PRE (g = 0.50 [-0.26, 1.24] and POST g = 0.71 [-0.05, 1.48]). During GXT, VO2 at the ventilatory threshold was significantly higher with RSE compared to PBO (+6.1 ± 7.3%; p < 0.05), though time-to-exhaustion (-4.0 ± 7.7%; p > 0.05) and maximal aerobic power (i.e., VO2 peak; -0.8 ± 5.6%; p > 0.05) were non-significantly lower with RSE. Conclusions: RSE as a nutritional supplement may elicit an ergogenic response by delaying the ventilatory threshold.

3.
Front Physiol ; 8: 518, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775694

RESUMO

Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9-10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus, atrophy occurs following 12 months of age in male Fisher rats and this may be due to translational deficits (i.e., changes in MPS and ribosome density) and/or increases in proteolysis rather than increased oxidative stress and/or alterations in global transcriptional mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA