Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 80(2): 175-177, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065017

RESUMO

Eisenbart et al. (2020) find an SSR-associated sRNA, NikS, that is subject to variable repeat-controlled expression. NikS regulates H. pylori virulence by post-transcriptionally repressing pathogenicity factors, including CagA and VacA, via base-pairing to their mRNAs.


Assuntos
Helicobacter pylori , Fatores de Virulência , DNA , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , RNA Bacteriano/genética , Virulência/genética
2.
Proc Natl Acad Sci U S A ; 121(27): e2403063121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38935561

RESUMO

Type I toxin-antitoxin systems (T1TAs) are bipartite bacterial loci encoding a growth-inhibitory toxin and an antitoxin small RNA (sRNA). In many of these systems, the transcribed toxin mRNA is translationally inactive, but becomes translation-competent upon ribonucleolytic processing. The antitoxin sRNA targets the processed mRNA to inhibit its translation. This two-level control mechanism prevents cotranscriptional translation of the toxin and allows its synthesis only when the antitoxin is absent. Contrary to this, we found that the timP mRNA of the timPR T1TA locus does not undergo enzymatic processing. Instead, the full-length timP transcript is both translationally active and can be targeted by the antitoxin TimR. Thus, tight control in this system relies on a noncanonical mechanism. Based on the results from in vitro binding assays, RNA structure probing, and cell-free translation experiments, we suggest that timP mRNA adopts mutually exclusive structural conformations. The active form uniquely possesses an RNA pseudoknot structure which is essential for translation initiation. TimR preferentially binds to the active conformation, which leads to pseudoknot destabilization and inhibited translation. Based on this, we propose a model in which "structural processing" of timP mRNA enables tight inhibition by TimR in nonpermissive conditions, and TimP synthesis only upon TimR depletion.


Assuntos
Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Bacteriano , RNA Mensageiro , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Antitoxinas/metabolismo , Antitoxinas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica
3.
Mol Cell ; 70(5): 971-982.e6, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804828

RESUMO

The conserved RNA-binding protein ProQ has emerged as the centerpiece of a previously unknown third large network of post-transcriptional control in enterobacteria. Here, we have used in vivo UV crosslinking and RNA sequencing (CLIP-seq) to map hundreds of ProQ binding sites in Salmonella enterica and Escherichia coli. Our analysis of these binding sites, many of which are conserved, suggests that ProQ recognizes its cellular targets through RNA structural motifs found in small RNAs (sRNAs) and at the 3' end of mRNAs. Using the cspE mRNA as a model for 3' end targeting, we reveal a function for ProQ in protecting mRNA against exoribonucleolytic activity. Taken together, our results underpin the notion that ProQ governs a post-transcriptional network distinct from those of the well-characterized sRNA-binding proteins, CsrA and Hfq, and suggest a previously unrecognized, sRNA-independent role of ProQ in stabilizing mRNAs.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Processamento de Terminações 3' de RNA , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Salmonella enterica/metabolismo , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exorribonucleases/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Salmonella enterica/genética , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 51(9): 4572-4587, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987847

RESUMO

RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Sequenciamento de Cromatina por Imunoprecipitação , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Poliadenilação , Ligação Proteica
5.
Mol Microbiol ; 117(1): 4-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34245186

RESUMO

Post-transcriptional regulatory networks in Gammaproteobacteria are to a large extent built around the two globally acting RNA-binding proteins (RBPs) CsrA and Hfq. Both RBPs interact with small regulatory RNAs (sRNAs), but the functional outcomes of these interactions are generally distinct. Whereas Hfq both stabilizes sRNAs and promotes their base-pairing to target mRNAs, the sRNAs bound by CsrA act as sequestering molecules that titrate the RBP away from its mRNA targets. In this issue of Molecular Microbiology, Lai et al. reveal that CsrA interacts with the Hfq-associated and base-pairing sRNA Spot 42. In this case, CsrA increases Spot 42 stability by masking a cleavage site for endoribonuclease RNase E, thereby promoting Spot 42-dependent regulation of srlA mRNA. Interestingly, the effect of CsrA on srlA expression is two-fold. In addition to affecting Spot 42-dependent regulation, CsrA directly inhibits translation of SrlM, an activator of srlA transcription. Together, this study reveals a new function for CsrA and indicates more intricate connections between the CsrA and Hfq networks than previously anticipated. Several recent studies have identified additional RBPs that interact with sRNAs. With new RBP identification methods at hand, it will be intriguing to see how many more sRNA-binding proteins will be uncovered.


Assuntos
Fator Proteico 1 do Hospedeiro , Pequeno RNA não Traduzido , Pareamento de Bases , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética
6.
EMBO J ; 38(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833291

RESUMO

Small RNAs post-transcriptionally regulate many processes in bacteria. Base-pairing of sRNAs near ribosome-binding sites in mRNAs inhibits translation, often requiring the RNA chaperone Hfq. In the canonical model, Hfq simultaneously binds sRNAs and mRNA targets to accelerate pairing. Here, we show that the Escherichia coli sRNAs OmrA and OmrB inhibit translation of the diguanylate cyclase DgcM (previously: YdaM), a player in biofilm regulation. In OmrA/B repression of dgcM, Hfq is not required as an RNA interaction platform, but rather unfolds an inhibitory RNA structure that impedes OmrA/B binding. This restructuring involves distal face binding of Hfq and is supported by RNA structure mapping. A corresponding mutant protein cannot support inhibition in vitro and in vivo; proximal and rim mutations have negligible effects. Strikingly, OmrA/B-dependent translational inhibition in vitro is restored, in complete absence of Hfq, by a deoxyoligoribonucleotide that base-pairs to the biochemically mapped Hfq site in dgcM mRNA We suggest that Hfq-dependent RNA structure remodeling can promote sRNA access, which represents a mechanism distinct from an interaction platform model.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Biossíntese de Proteínas , Dobramento de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Escherichia coli/crescimento & desenvolvimento , Ribossomos/genética , Ribossomos/metabolismo
7.
Nucleic Acids Res ; 49(17): 9992-10006, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34450657

RESUMO

The global RNA-binding protein ProQ has emerged as a central player in post-transcriptional regulatory networks in bacteria. While the N-terminal domain (NTD) of ProQ harbors the major RNA-binding activity, the role of the ProQ C-terminal domain (CTD) has remained unclear. Here, we have applied saturation mutagenesis coupled to phenotypic sorting and long-read sequencing to chart the regulatory capacity of Salmonella ProQ. Parallel monitoring of thousands of ProQ mutants allowed mapping of critical residues in both the NTD and the CTD, while the linker separating these domains was tolerant to mutations. Single amino acid substitutions in the NTD associated with abolished regulatory capacity strongly align with RNA-binding deficiency. An observed cellular instability of ProQ associated with mutations in the NTD suggests that interaction with RNA protects ProQ from degradation. Mutation of conserved CTD residues led to overstabilization of RNA targets and rendered ProQ inert in regulation, without affecting protein stability in vivo. Furthermore, ProQ lacking the CTD, although binding competent, failed to protect an mRNA target from degradation. Together, our data provide a comprehensive overview of residues important for ProQ-dependent regulation and reveal an essential role for the enigmatic ProQ CTD in gene regulation.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Domínios Proteicos/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Salmonella/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Sítio-Dirigida , Domínios Proteicos/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional/genética
8.
Genes Dev ; 27(10): 1073-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23699406

RESUMO

The abundant RNA-binding proteins CsrA and Hfq each impact bacterial physiology by working in conjunction with small RNAs to control large post-transcriptional regulons. The small RNAs involved were considered mechanistically distinct, regulating mRNAs either directly through Hfq-mediated base-pairing or indirectly by sequestering the global translational repressor CsrA. In this issue of Genes & Development, Jørgensen and colleagues (pp. 1132-1145) blur these distinctions with a dual-mechanism small RNA that acts through both Hfq and CsrA to regulate the formation of bacterial biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
9.
EMBO J ; 35(9): 991-1011, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27044921

RESUMO

The molecular roles of many RNA-binding proteins in bacterial post-transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP-seq) have begun to revolutionize the transcriptome-wide mapping of eukaryotic RNA-binding protein target sites. We have applied CLIP-seq to chart the target landscape of two major bacterial post-transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single-nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3'-located Rho-independent terminators as a universal motif involved in Hfq-RNA interactions. Additionally, Hfq preferentially binds 5' to sRNA-target sites in mRNAs, and 3' to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA-mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA-target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP-seq approach will bring new insights into post-transcriptional gene regulation by RNA-binding proteins in diverse bacterial species.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Salmonella typhimurium/enzimologia , Sítios de Ligação , Ligação Proteica , Raios Ultravioleta
10.
RNA Biol ; 17(6): 872-880, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32133913

RESUMO

Bacteria can move by a variety of mechanisms, the best understood being flagella-mediated motility. Flagellar genes are organized in a three-tiered cascade allowing for temporally regulated expression that involves both transcriptional and post-transcriptional control. The class I operon encodes the master regulator FlhDC that drives class II gene transcription. Class II genes include fliA and flgM, which encode the Sigma factor σ28, required for class III transcription, and the anti-Sigma factor FlgM, which inhibits σ28 activity, respectively. The flhDC mRNA is regulated by several small regulatory RNAs (sRNAs). Two of these, the sequence-related OmrA and OmrB RNAs, inhibit FlhD synthesis. Here, we report on a second layer of sRNA-mediated control downstream of FhlDC in the flagella pathway. By mutational analysis, we confirm that a predicted interaction between the conserved 5' seed sequences of OmrA/B and the early coding sequence in flgM mRNA reduces FlgM expression. Regulation is dependent on the global RNA-binding protein Hfq. In vitro experiments support a canonical mechanism: binding of OmrA/B prevents ribosome loading and decreases FlgM protein synthesis. Simultaneous inhibition of both FlhD and FlgM synthesis by OmrA/B complicated an assessment of how regulation of FlgM alone impacts class III gene transcription. Using a combinatorial mutation strategy, we were able to uncouple these two targets and demonstrate that OmrA/B-dependent inhibition of FlgM synthesis liberates σ28 to ultimately promote higher expression of the class III flagellin gene fliC.


Assuntos
Proteínas de Bactérias/biossíntese , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Fator Proteico 1 do Hospedeiro/metabolismo , Mutação , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Ribossomos/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(26): 6824-6829, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611217

RESUMO

The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of cspC and cspE fully attenuates Salmonella in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.


Assuntos
Proteínas de Bactérias , Proteínas e Peptídeos de Choque Frio , Proteínas de Choque Térmico , Proteínas de Ligação a RNA , Infecções por Salmonella , Salmonella typhimurium , Fatores de Virulência , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Escherichia coli , Feminino , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
RNA ; 23(5): 696-711, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193673

RESUMO

The protein ProQ has recently been identified as a global small noncoding RNA-binding protein in Salmonella, and a similar role is anticipated for its numerous homologs in divergent bacterial species. We report the solution structure of Escherichia coli ProQ, revealing an N-terminal FinO-like domain, a C-terminal domain that unexpectedly has a Tudor domain fold commonly found in eukaryotes, and an elongated bridging intradomain linker that is flexible but nonetheless incompressible. Structure-based sequence analysis suggests that the Tudor domain was acquired through horizontal gene transfer and gene fusion to the ancestral FinO-like domain. Through a combination of biochemical and biophysical approaches, we have mapped putative RNA-binding surfaces on all three domains of ProQ and modeled the protein's conformation in the apo and RNA-bound forms. Taken together, these data suggest how the FinO, Tudor, and linker domains of ProQ cooperate to recognize complex RNA structures and serve to promote RNA-mediated regulation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação a RNA/química , Regiões 3' não Traduzidas , Sítios de Ligação , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(41): 11591-11596, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671629

RESUMO

The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Salmonella enterica/metabolismo , Sequência Conservada/genética , Ligantes , Análise de Componente Principal , RNA Bacteriano/genética , RNA não Traduzido/genética
14.
Biochem Soc Trans ; 45(6): 1203-1212, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29101308

RESUMO

Bacterial life is harsh and involves numerous environmental and internal challenges that are perceived as stresses. Consequently, adequate responses to survive, cope with, and counteract stress conditions have evolved. In the last few decades, a class of small, non-coding RNAs (sRNAs) has been shown to be involved as key players in stress responses. This review will discuss - primarily from an enterobacterial perspective - selected stress response pathways that involve antisense-type sRNAs. These include themes of how bacteria deal with severe envelope stress, threats of DNA damage, problems with poisoning due to toxic sugar intermediates, issues of iron homeostasis, and nutrient limitation/starvation. The examples discussed highlight how stress relief can be achieved, and how sRNAs act mechanistically in regulatory circuits. For some cases, we will propose scenarios that may suggest why contributions from post-transcriptional control by sRNAs, rather than transcriptional control alone, appear to be a beneficial and universally selected feature.


Assuntos
RNA Bacteriano/fisiologia , Pequeno RNA não Traduzido/genética , Estresse Fisiológico , RNA Bacteriano/genética
15.
Nucleic Acids Res ; 41(12): e122, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609548

RESUMO

We present here a method that enables functional screening of large number of mutations in a single experiment through the combination of random mutagenesis, phenotypic cell sorting and high-throughput sequencing. As a test case, we studied post-transcriptional gene regulation of the bacterial csgD messenger RNA, which is regulated by a small RNA (sRNA). A 109 bp sequence within the csgD 5'-UTR, containing all elements for expression and sRNA-dependent control, was mutagenized close to saturation. We monitored expression from a translational gfp fusion and collected fractions of cells with distinct expression levels by fluorescence-activated cell sorting. Deep sequencing of mutant plasmids from cells in different activity-sorted fractions identified functionally important positions in the messenger RNA that impact on intrinsic (translational activity per se) and extrinsic (sRNA-based) gene regulation. The results obtained corroborate previously published data. In addition to pinpointing nucleotide positions that change expression levels, our approach also reveals mutations that are silent in terms of gene expression and/or regulation. This method provides a simple and informative tool for studies of regulatory sequences in RNA, in particular addressing RNA structure-function relationships (e.g. sRNA-mediated control, riboswitch elements). However, slight protocol modifications also permit mapping of functional DNA elements and functionally important regions in proteins.


Assuntos
Regiões 5' não Traduzidas , Mutagênese , Sequências Reguladoras de Ácido Ribonucleico , Proteínas de Escherichia coli/genética , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Conformação de Ácido Nucleico , Fenótipo , Biossíntese de Proteínas , RNA Mensageiro/química , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de DNA , Transativadores/genética
16.
EMBO J ; 29(11): 1840-50, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20407422

RESUMO

Escherichia coli produces proteinaceous surface structures called curli that are involved in adhesion and biofilm formation. CsgD is the transcriptional activator of curli genes. We show here that csgD expression is, in part, controlled post-transcriptionally by two redundant small RNAs (sRNAs), OmrA and OmrB. Their overexpression results in curli deficiency, in accordance with the inhibition of chromosomally encoded, FLAG-tagged CsgD. Downregulation of csgD occurs by a direct antisense interaction within the csgD 5'-UTR, far upstream of the ribosome-binding site (RBS). OmrA/B downregulate plasmid-borne csgD-gfp fusions in vivo, and inhibit CsgD translation in vitro. The RNA chaperone Hfq is required for normal csgD mRNA and OmrA/B levels in the cell, and enhances sRNA-dependent inhibition of csgD translation in vitro. Translational inhibition involves two phylogenetically conserved secondary structure modules that are supported by chemical and enzymatic probing. The 5'-most element is necessary and sufficient for regulation, the one downstream comprises the RBS and affects translational efficiency. OmrA/B are two antisense RNAs that regulate a transcription factor to alter a morphotype and group behaviour.


Assuntos
Escherichia coli/fisiologia , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Ribossomos/metabolismo , Sítios de Ligação/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmídeos , Proteínas/genética , Proteínas/metabolismo , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA não Traduzido/química , RNA não Traduzido/genética , Ribossomos/genética
17.
Methods Mol Biol ; 2741: 347-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217662

RESUMO

RNA-binding proteins (RBPs) are at the heart of many biological processes and are therefore essential for cellular life. Following identification of single RBPs by classical genetics and molecular biology methods, approaches for RBP discovery on a systems level have recently emerged. For instance, RNA interactome capture (RIC) enables the global purification of RBPs cross-linked to polyadenylated RNA using oligo(dT) probes. RIC was originally developed for eukaryotic organisms but was recently established for capturing RBPs in bacteria. In this chapter, we provide a detailed step-by-step protocol for performing RIC in bacteria. The protocol is based on its application to Escherichia coli but should be amenable for charting other genetically tractable bacterial species.


Assuntos
Proteínas de Ligação a RNA , RNA , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA/genética , Bactérias/genética , Bactérias/metabolismo , Eucariotos/genética
18.
mSphere ; 9(3): e0001824, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38411119

RESUMO

Gastrointestinal disease caused by Salmonella enterica is associated with the pathogen's ability to replicate within epithelial cells and macrophages. Upon host cell entry, the bacteria express a type-three secretion system encoded within Salmonella pathogenicity island 2, through which host-manipulating effector proteins are secreted to establish a stable intracellular niche. Transcription of this intracellular virulence program is activated by the PhoPQ two-component system that senses the low pH and the reduced magnesium concentration of host cell vacuoles. In addition to transcriptional control, Salmonella commonly employ RNA-binding proteins (RBPs) and small regulatory RNAs (sRNAs) to regulate gene expression at the post-transcriptional level. ProQ is a globally acting RBP in Salmonella that promotes expression of the intracellular virulence program, but its RNA repertoire has previously been characterized only under standard laboratory growth conditions. Here, we provide a high-resolution ProQ interactome during conditions mimicking the environment of the Salmonella-containing vacuole (SCV), revealing hundreds of previously unknown ProQ binding sites in sRNAs and mRNA 3'UTRs. ProQ positively affected both the levels and the stability of many sRNA ligands, some of which were previously shown to associate with the well-studied and infection-relevant RBP Hfq. We further show that ProQ activates the expression of PhoP at the post-transcriptional level, which, in turn, leads to upregulation of the intracellular virulence program. IMPORTANCE: Salmonella enterica is a major pathogen responsible for foodborne gastroenteritis, and a leading model organism for genetic and molecular studies of bacterial virulence mechanisms. One key trait of this pathogen is the ability to survive within infected host cells. During infection, the bacteria employ a type three secretion system that deliver effector proteins to target and manipulate host cell processes. The transcriptional regulation of this virulence program is well understood. By contrast, the factors and mechanisms operating at the post-transcriptional level to control virulence gene expression are less clear. In this study, we have charted the global RNA ligand repertoire of the RNA-binding protein ProQ during in vitro conditions mimicking the host cell environment. This identified hundreds of binding sites and revealed ProQ-dependent stabilization of intracellular-specific small RNAs. Importantly, we show that ProQ post-transcriptionally activates the expression of PhoP, a master transcriptional activator of intracellular virulence in Salmonella.


Assuntos
Salmonella enterica , Salmonella typhimurium , Virulência/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella enterica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo
19.
Mol Microbiol ; 84(3): 414-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22324810

RESUMO

Roughly 10% of all genes in Escherichia coli are controlled by the global transcription factor Lrp, which responds to nutrient availability. Bioinformatically, we identified lrp as one of several putative targets for the sRNA MicF, which is transcriptionally downregulated by Lrp. Deleting micF results in higher Lrp levels, while overexpression of MicF inhibits Lrp synthesis. This effect is by antisense; mutations in the predicted interaction region relieve MicF-dependent repression of Lrp synthesis, and regulation is restored by compensatory mutations. In vitro, MicF sterically interferes with initiation complex formation and inhibits lrp mRNA translation. In vivo, MicF indirectly activates genes in the Lrp regulon by repressing Lrp, and causes severely impaired growth in minimal medium, a phenotype characteristic of lrp deletion strains. The double negative feedback between MicF and Lrp may promote a switch for adequate Lrp-dependent adaptation to nutrient availability. Lrp adds to the growing list of transcription factors that are targeted by sRNAs, thus indicating that perhaps the majority of all bacterial genes may be directly or indirectly controlled by sRNAs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Reguladora de Resposta a Leucina/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Transcrição Gênica
20.
Elife ; 122023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920032

RESUMO

Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5' end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Óperon , Fases de Leitura Aberta/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA