Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445252

RESUMO

Gulf War Illness (GWI) is a persistent chronic neuroinflammatory illness exacerbated by external stressors and characterized by fatigue, musculoskeletal pain, cognitive, and neurological problems linked to underlying immunological dysfunction for which there is no known treatment. As the immune system and the brain communicate through several signaling pathways, including the hypothalamic-pituitary-adrenal (HPA) axis, it underlies many of the behavioral and physiological responses to stressors via blood-borne mediators, such as cytokines, chemokines, and hormones. Signaling by these molecules is mediated by the semipermeable blood-brain barrier (BBB) made up of a monocellular layer forming an integral part of the neuroimmune axis. BBB permeability can be altered and even diminished by both external factors (e.g., chemical agents) and internal conditions (e.g., acute or chronic stress, or cross-signaling from the hypothalamic-pituitary-gonadal (HPG) axis). Such a complex network of regulatory interactions that possess feed-forward and feedback connections can have multiple response dynamics that may include several stable homeostatic states beyond normal health. Here we compare immune and hormone measures in the blood of human clinical samples and mouse models of Gulf War Illness (GWI) subtyped by exposure to traumatic stress for subtyping this complex illness. We do this via constructing a detailed logic model of HPA-HPG-Immune regulatory behavior that also considers signaling pathways across the BBB to neuronal-glial interactions within the brain. We apply conditional interactions to model the effects of changes in BBB permeability. Several stable states are identified in the system beyond typical health. Following alignment of the human and mouse blood profiles in the context of the model, mouse brain sample measures were used to infer the neuroinflammatory state in human GWI and perform treatment simulations using a genetic algorithm to optimize the Monte Carlo simulations of the putative treatment strategies aimed at returning the ill system back to health. We identify several ideal multi-intervention strategies and potential drug candidates that may be used to treat chronic neuroinflammation in GWI.


Assuntos
Barreira Hematoencefálica/imunologia , Modelos Imunológicos , Modelos Neurológicos , Neuroimunomodulação , Síndrome do Golfo Pérsico , Transdução de Sinais , Adulto , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Síndrome do Golfo Pérsico/tratamento farmacológico , Síndrome do Golfo Pérsico/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
2.
Horm Behav ; 61(1): 100-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101260

RESUMO

Female assessment of male attractiveness and how preferred qualities impact reproductive success is central to the study of mate choice. Male attractiveness may depend on traits beneficial to the reproductive success (RS) of any female, termed 'universal quality', and/or on behavioral and biological interactions between potential mates that reflect 'compatibility'. The steroid hormone testosterone (T) often underlies male attractiveness in rodents and is associated with enhanced paternal care in the monogamous and biparental California mouse (Peromyscus californicus). We hypothesized that (1) T-characteristics are universally attractive to female California mice and that (2) if reproductive success is higher for females mated with preferred males, then females mated with males preferred by other females will also have higher reproductive success. Alternatively, we speculated that pair compatibility, based on emergent pair qualities, is important for a species with coordinated offspring care. We assessed individual T-characteristics in three ways: (1) T-response to GnRH challenges (2) baseline T-level and (3) T-response to a female. Testosterone-response did not predict female preference, but females spent more time investigating males with higher baseline T (accounting for only 9.6% of the variation in investigation time). None of the T-measures was associated with RS. Females paired with males they preferred produced litters more quickly and had higher RS than females paired with their non-preferred males. Naïve females who did not undergo preference tests had equivalent RS regardless of whether their mate was preferred or non-preferred by another female. These data suggest that higher male T elicits investigation, but female preference in the California mouse is more strongly linked with compatibility because individual preference was a better predictor of RS than any T measure.


Assuntos
Fertilidade/fisiologia , Preferência de Acasalamento Animal/fisiologia , Peromyscus/fisiologia , Testosterona/sangue , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Preferência de Acasalamento Animal/efeitos dos fármacos
3.
Front Behav Neurosci ; 13: 101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143105

RESUMO

Early life stress (ELS) is a potent developmental disruptor and increases the risk for psychopathology. Various forms of ELS have been studied in both humans and rodents, and have been implicated in altered DNA methylation, gene transcription, stress hormone levels, and behavior. Although recent studies have focused on stress-induced epigenetic changes, the extent to which ELS alters HPA axis function and stress responsivity across generations, whether these effects are sex-specific, and how lineage interacts with upbringing to impact these effects, remain unclear. To address these points, two generations of rodents were utilized, with the first generation subjected to ELS via maternal separation, and the second to a balanced cross-fostering paradigm. We hypothesized that ELS would disrupt normative development in both generations, manifesting as altered methylation and expression of genes associated with stress signaling pathways (Nr3c1, Nr3c2, and Bdnf), blunted corticosterone (CORT), and anxiety-like behaviors. Additionally, we expected deficits in the second generation to be modulated by caretaking environment and for the pattern of results to differ between the sexes. Results suggest that direct exposure to ELS leads to sex-specific effects on gene regulation and HPA functioning in adulthood, with maternal separation leading to increases in Bdnf methylation in both sexes, decreases in Bdnf expression in females, and decreases in Nr3c1 methylation in males, as well as blunted CORT and less anxiety-like behavior in females. These alterations converged with caretaking to impart perturbations upon the subsequent generation. Across sex, ELS lineage led to decreased methylation of Nr3c1, and increased methylation of Bdnf. In fostered animals, upbringing by a previously stressed mother interacted with offspring lineage to impact methylation of Nr3c1 and Bdnf. Upbringing was also implicated in altered anxiety-like behavior in males, and baseline CORT levels in females. Such effects may correspond with observed alterations in maternal behavior across groups. In conclusion, ELS conferred enduring sex-specific alterations, both first-hand and trans-generationally via lineage and upbringing. Importantly, lineage of cross-fostered pups was sufficient to normalize or disturb maternal behavior of foster-dams, an observation requiring further elucidation. These results have implications for multi-generational effects of ELS in humans and may motivate early interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA