Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517204

RESUMO

Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using spectral unmixing methods. Currently, most of the reported image processing algorithms use standard unmixing procedures, which include user interaction in the form of providing the expected spectral signatures. For translational research with patients, these types of supervised spectral unmixing can be challenging, as the spectral signature of the tissues can differ with respect to the disease condition. Imaging exogenous contrast agents and accessing their biodistribution can also be problematic, as some of the contrast agents are susceptible to change in spectral properties after the tissue interaction. In this work, we investigated the feasibility of an unsupervised spectral unmixing algorithm to detect and extract the tissue chromophores without any a-priori knowledge and user interaction. The algorithm has been optimized for multispectral photoacoustic imaging in the spectral range of 680-900 nm. The performance of the algorithm has been tested on simulated data, tissue-mimicking phantom, and also on the detection of exogenous contrast agents after the intravenous injection in mice. Our finding shows that the proposed automatic, unsupervised spectral unmixing method has great potential to extract and quantify the tissue chromophores, and this can be used in any wavelength range of the multispectral photoacoustic images.


Assuntos
Meios de Contraste/análise , Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Algoritmos , Animais , Humanos , Camundongos , Imagens de Fantasmas , Análise Espectral , Distribuição Tecidual
2.
Adv Healthc Mater ; 10(22): e2101077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382354

RESUMO

The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors' signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated.


Assuntos
Diagnóstico por Imagem , Técnicas Fotoacústicas , Animais , Camundongos , Ultrassonografia
3.
Adv Healthc Mater ; 10(4): e2001089, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32864903

RESUMO

The π-conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) with deep-red/near-infrared (NIR) absorption and emission has been investigated as a contrast agent for in vivo optical and photoacoustic imaging. PCPDTBT is encapsulated within poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG2kDa -PLGA4kDa or PEG5kDa -PLGA55kDa ) micelles or enveloped by the phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG2kDa -DPPE), to investigate the formulation effect on imaging performance, biodistribution, and biocompatibility. Nanoparticles that meet the quality requirements for parenteral administration are generated with similar physicochemical properties. Optical phantom imaging reveals that both PEG-PLGA systems exhibit a 30% higher signal-to-background ratio (SBR) than PEG2kDa -DPPE. This trend cannot be observed in a murine HeLa xenograft model following intravenous administration since dramatic differences in biodistribution are observed. PEG2kDa -PLGA4kDa systems accumulate more rapidly in the liver compared to other formulations and PEG2kDa -DPPE demonstrates a higher tumor localization. Protein content in the "hard" corona differs between formulations (PEG2kDa -DPPE < PEG2kDa -PLGA4kDa < PEG5kDa -PLGA55kDa ), although this observation alone does not explain biodistribution patterns. PEG2kDa -PLGA4kDa systems show the highest photoacoustic amplitude in a phantom, but also a lower signal in the tumor due to differences in biodistribution. This study demonstrates that formulations for conjugated polymer contrast agents can have significant impact on both imaging performance and biodistribution.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Animais , Meios de Contraste , Camundongos , Poliésteres , Polietilenoglicóis , Polímeros , Distribuição Tecidual
4.
Eur J Pharm Biopharm ; 154: 297-308, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32707286

RESUMO

Conjugated polymer nanoparticles (CPNs) have emerged as highly photostable probes for optical and photoacoustic imaging. However, the aggregation of conjugated polymer (CP) molecules upon nanoparticle formation is associated with fluorescence quenching, poor yields and mutable particle sizes. This study investigated whether the CP encapsulation within the liquid midchain triglyceride (MCT) core of lipid nanocapsules (LNCs) may achieve reduced packing of CP chains leading to a stable system with enhanced optical features. The red- and near infrared-emitting CPs, CN-PPV and PCPDTBT, showed precipitation and aggregation-induced quenching with concentrations >~25 µg/mL in MCT alone. Despite this, CP encapsulation within LNCs abolished quenching at concentrations up to 1500 µg/mL. PCPDTBT-LNCs exhibited a quantum yield of 2.8% and a higher signal:background ratio in an optical imaging phantom compared to literature reports of PCPDTBT encapsulated in PEG-PLGA nanoparticles. In contrast, PCPDTBT-LNCs had slightly lower photoacoustic amplitudes than reported PEG-PLGA systems. CP-LNCs were also stable in size (32 ± 0.7 nm) and photoluminescence over 21 days at 4 °C, 25 °C and 37 °C. In summary, encapsulation of CP within the liquid core of lipid nanocapsules enhances the optical properties of fluorescent CP.


Assuntos
Corantes Fluorescentes/química , Nanocápsulas/química , Imagem Óptica/métodos , Polietilenoglicóis/química , Polímeros/química , Estearatos/química , Triglicerídeos/química , Animais , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Humanos , Lipídeos , Camundongos , Nanocápsulas/administração & dosagem , Imagem Óptica/tendências , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Polímeros/administração & dosagem , Polímeros/metabolismo , Estearatos/administração & dosagem , Estearatos/metabolismo , Triglicerídeos/administração & dosagem , Triglicerídeos/metabolismo
5.
J Mater Chem B ; 7(33): 5115-5124, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31363720

RESUMO

The near-infrared absorbing conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) has been investigated as a contrast agent for optical and photoacoustic imaging. Lipophilic π-conjugated polymers can be efficiently encapsulated within self-assembling diblock copolymer poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles, although the effect of variations in PEG and PLGA chain lengths on nanoparticle properties, performance and biocompatibility have not yet been investigated. In this study, PEG-PLGA with different block lengths (PEG2kDa-PLGA4kDa, PEG2kDa-PLGA15kDa and PEG5kDa-PLGA55kDa) were used to encapsulate PCPDTBT. Nanoparticle sizes were smallest (<100 nm) when using PEG2kDa-PLGA4kDa, with <5% PCPDTBT content and a reduction in the total solids concentration of the organic phase. All PEG-PLGA nanoparticles were colloidally stable in water and serum-supplemented cell culture medium over 24 h at 37 °C, with slight evidence of protein surface adsorption. PEG2kDa-PLGA4kDa systems showed a threefold lower cytotoxicity (IC50 value) than the other two systems. Haemolytic activity was <2.5% for all systems and no platelet aggregation or inhibition of ADP-induced platelet aggregation was observed. Encapsulation of PCPDTBT within a PEG-PLGA matrix shifted fluorescence emission towards red wavelengths (760 nm in THF vs. 840 nm in nanoparticles) and reduced the quantum yield by 30-70-fold compared to THF. Nonetheless, PCPDTBT:PEG2kDa-PLGA4kDa systems had a marginally higher quantum yield and signal-to-background ratio in a phantom mouse compared with PEG2kDa-PLGA15kDa and PEG5kDa-PLGA55kDa systems. As a photoacoustic imaging probe, PCPDTBT:PEG2kDa-PLGA4kDa systems also showed a higher photoacoustic amplitude compared to higher molecular weight PEG-PLGA systems. Overall, the low molecular weight PEG2kDa-PLGA4kDa nanoparticle systems conferred the benefits of smaller sizes, reduced cytotoxicity and enhanced imaging performance compared to higher molecular weight matrix polymers.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Peso Molecular , Nanopartículas/toxicidade , Tamanho da Partícula , Agregação Plaquetária/efeitos dos fármacos , Polímeros/química , Tiadiazóis/química , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA