Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 14(10): e1007675, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286078

RESUMO

The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Desenvolvimento Maxilofacial/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Crânio/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Via de Sinalização Hippo , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Maxilofacial/genética , Camundongos , Crista Neural/citologia , Tamanho do Órgão , Fosforilação , Transdução de Sinais , Crânio/metabolismo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
2.
Development ; 143(22): 4115-4126, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27660324

RESUMO

Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.


Assuntos
Autorrenovação Celular/genética , Proteínas de Homeodomínio , Incisivo/embriologia , Fator 1 de Ligação ao Facilitador Linfoide , Odontogênese/genética , Fatores de Transcrição SOXB1 , Células-Tronco/fisiologia , Fatores de Transcrição , Animais , Células Cultivadas , Embrião de Mamíferos , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
3.
Am J Phys Anthropol ; 166(4): 791-802, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29566424

RESUMO

OBJECTIVES: Assessing the strength of integration among different regions of the modern human nasal complex is important for developing a more thorough understanding of the determinants of nasal morphology. Given the morphogenetic influence of cartilage on adjacent intramembranous growth sites, the interaction between chondrocranial- versus intramembranous-derived nasal structures may have a significant influence on patterns of nasal variation. The purpose of this study is to examine integration between the chondrocranial- and intramembranous-derived regions of the nasal complex. MATERIALS AND METHODS: Using computed tomograph (CT) scans, we collected three-dimensional coordinate landmark data from a static adult sample (n = 62). First, using centroid size, and the symmetric and asymmetric components of shape variation, we examined the strength of integration between landmarks representing chondrocranial-derived structures (e.g., ethmoid, external nasal cartilages) and landmarks representing intramembranous-derived structures (nasal floor, anterior nasal aperture, etc.). Second, given that the strength of integration is a relative measure, we compared integration between chondrocranial- and intramembranous-derived structures to the more modularized external and internal regions of the nasal complex. RESULTS: There was significant moderate morphological integration between chondrocranial- versus intramembranous-derived regions of the nasal complex. Moreover, integration between chondrocranial- versus intramembranous-derived structures was consistently stronger when compared to external versus internal regions for both the symmetric and asymmetric components of variation. Thus, more covariation within the nasal complex could be explained by the relationship between chondrocranial- and intramembranous-derived structures. CONCLUSIONS: Our results suggest that the interaction between chondrocranial- and intramembranous-derived structures may be an important determinant in the patterning of nasal complex variation.


Assuntos
Evolução Biológica , Nariz , Adulto , Antropologia Física , Osso Etmoide/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Osso Nasal/diagnóstico por imagem , Cartilagens Nasais/diagnóstico por imagem , Nariz/anatomia & histologia , Nariz/diagnóstico por imagem , Nariz/fisiologia , Tomografia Computadorizada por Raios X
4.
Am J Orthod Dentofacial Orthop ; 154(1): 72-81, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29957323

RESUMO

INTRODUCTION: Children with high body mass index (BMI) values have been demonstrated to have precocious dental development. Research has largely focused on cross-sectional data sets, leaving an incomplete understanding of the longitudinal relationship between BMI and dental maturation. METHODS: We used a pure longitudinal growth series to examine the relationship between dental development and childhood BMI. Periapical radiographs from 77 children from the Iowa Growth Study were used to estimate dental development for those with high BMI values. RESULTS: We confirmed prior studies in finding that children with higher BMI values were more likely to have advanced dental development for their ages (P <0.001). BMI at age 4 years was predictive for the timing of dental development at age 12 (P = 0.052). The precocity of the rate of dental development accelerated across growth. Overall dental development scores also correlated with the age of dental eruption for the mandibular canines and first premolars (P <0.001). CONCLUSIONS: High BMI values at young ages predict advanced dental development at later times, suggesting a long-term effect of BMI on dental maturation and implying the need for earlier orthodontic interventions in obese children. These results corroborate those of previous studies, building further evidence that relatively early dental eruption is another consequence of childhood obesity.


Assuntos
Índice de Massa Corporal , Obesidade Infantil/fisiopatologia , Erupção Dentária/fisiologia , Dente/crescimento & desenvolvimento , Adolescente , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Iowa , Estudos Longitudinais , Masculino
5.
J Anat ; 230(5): 689-700, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28220482

RESUMO

The nasal septal cartilage is thought to be a key growth center that contributes to nasofacial skeletal development. Despite the developmental influence of the nasal septum however, humans often exhibit a high frequency of septal deviation suggesting discordance in the growth between the septum and surrounding nasofacial skeleton. While there are numerous etiological factors that contribute to septal deviation, the surrounding nasofacial skeleton may also act to constrain the septum, resulting in altered patterns of growth. That is, while the nasal septum has a direct morphogenetic influence on aspects of the nasofacial skeleton, other nasofacial skeletal components may restrict septal growth resulting in deviation. Detailing the developmental relationship between these structures is important not only for understanding the causal determinants of nasal septal deviation, but also for developing a broader understanding of the complex interaction between the facial skeleton and chondrocranium. We selected 66 non-syndromic subjects from the University of Minnesota Orthodontic Clinic who ranged from 7 to 18 years in age and had an existing pretreatment cone-beam computed tomography (CBCT) scan. Using CBCT data, we examined the developmental relationship between nasal septal deviation and the surrounding nasofacial skeleton. We measured septal deviation as a percentage of septal volume relative to a modeled non-deviated septum. We then collected a series of coordinate landmark data in the region immediately surrounding the nasal septum in the midsagittal plane representing the nasofacial skeleton. First, we examined ontogenetic changes in the magnitude of nasal septal deviation relative to chronological age and nasofacial size. Next, using Procrustes-based geometric morphometric techniques, we assessed the morphological relationship between nasal septal deviation and nasofacial skeletal shape. Our results indicate that variation in the magnitude of nasal septal deviation was established in our earliest age group and maintained throughout ontogeny. Moreover, nasal septal deviation was correlated with non-allometric variation in nasofacial shape restricted to the region of the anterior sphenoid body. Ultimately, our results suggest that early developmental variation in midline basicranial components may act to alter or constrain patterns of nasal septal growth.


Assuntos
Ossos Faciais/anatomia & histologia , Ossos Faciais/diagnóstico por imagem , Septo Nasal/anatomia & histologia , Septo Nasal/diagnóstico por imagem , Adolescente , Criança , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Cartilagens Nasais/anatomia & histologia , Cartilagens Nasais/diagnóstico por imagem , Distribuição Aleatória
6.
Am J Orthod Dentofacial Orthop ; 151(3): 539-558, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28257739

RESUMO

INTRODUCTION: Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. METHODS: Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. RESULTS: Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1AJUBA, SNAI3SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. CONCLUSIONS: Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified.


Assuntos
Má Oclusão/genética , Adolescente , Adulto , Idoso , Pontos de Referência Anatômicos , Criança , Tomografia Computadorizada de Feixe Cônico , Feminino , Fator de Crescimento de Fibroblastos 23 , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Componente Principal , Reprodutibilidade dos Testes
7.
Am J Phys Anthropol ; 160(1): 52-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26823241

RESUMO

OBJECTIVES: Potential integration between the nasal region and noncranial components of the respiratory system has significant implications for understanding determinants of craniofacial variation. There is increasing evidence that sexual dimorphism in body size and associated male-female differences in energetically relevant variables influence the development of the nasal region. To better understand this relationship, we examined the ontogeny of sexual dimorphism in nasal shape using a longitudinal series of lateral cephalograms. METHODS: We collected a series of two dimensional coordinate landmark data from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations across nine age groups. First, we tested whether there are sex differences in the nasal shape related to ontogenetic increases in body size (i.e., sitting height). Additionally, we examined whether there are male-female differences in patterns of nonallometric variation in nasal shape. Next, we tested whether there are sex differences in the strength of integration between the nasal region and other aspects of the facial skeleton. RESULTS: Our results indicate that there are a number of similarities in patterns of morphological variation in the nasal region between males and females. However, as sitting height increases males exhibit a disproportionate increase in nasal region height that is not present in the female sample. Moreover, the male nasal region is less integrated with the surrounding facial skeleton when compared to the female sample. CONCLUSIONS: These results are consistent with the hypothesis that sex differences in nasal development are associated with male-female differences in energetically relevant variables.


Assuntos
Nariz/anatomia & histologia , Nariz/crescimento & desenvolvimento , Crânio/anatomia & histologia , Adolescente , Adulto , Antropologia Física , Antropometria , Feminino , Humanos , Masculino , Análise de Componente Principal , Fatores Sexuais , Adulto Jovem
8.
Am J Phys Anthropol ; 161(2): 226-36, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27346254

RESUMO

OBJECTIVES: The curve of Spee (COS) is a mesio-distally curved alignment of the canine through distal molar cusp tips in certain mammals including modern humans and some fossil hominins. In humans, the alignment varies from concave to flat, and previous studies have suggested that this difference reflects craniofacial morphology, including the degree of alveolar prognathism. However, the relationship between prognathism and concavity of the COS has not been tested in craniofacially variant populations. We tested the hypothesis that greater alveolar prognathism covaries with a flatter COS in African-American and European-American populations. We further examined this relationship in fossil Homo including Homo neanderthalensis and early anatomically modern Homo sapiens, which are expected to extend the amount of variation in the COS from the extant sample. METHODS AND MATERIALS: These hypotheses were tested using three-dimensional geometric morphometrics. Landmarks were recorded from the skulls of 166 African-Americans, 123 European-Americans, and 10 fossil hominin mandible casts. Landmarks were subjected to generalized Procrustes analysis, principal components analysis, and two-block partial least squares analysis. RESULTS: We documented covariation between the COS and alveolar prognathism such that relatively prognathic individuals have a flatter COS. Mandibular data from the fossil hominin taxa generally confirm and extend this correlation across a greater range of facial size and morphology in Homo. DISCUSSION: Our results suggest that the magnitude of the COS is related to a suite of features associated with alveolar prognathism in modern humans and across anthropoids. We also discuss the implications for spatial interactions between the dental arches.


Assuntos
Dente Canino/anatomia & histologia , Hominidae/anatomia & histologia , Mandíbula/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Fósseis , Humanos
9.
Am J Phys Anthropol ; 153(3): 387-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24264260

RESUMO

Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well-established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons.


Assuntos
Fenômenos Biomecânicos/fisiologia , Mandíbula/anatomia & histologia , Mandíbula/fisiologia , Adolescente , Adulto , Pontos de Referência Anatômicos , Antropologia Física , Humanos , Masculino , Mandíbula/diagnóstico por imagem , Mastigação/fisiologia , Tomografia Computadorizada por Raios X , Adulto Jovem
10.
Am J Phys Anthropol ; 153(1): 52-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24318941

RESUMO

Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male-female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo.


Assuntos
Evolução Biológica , Face/fisiologia , Nariz/anatomia & histologia , Adolescente , Adulto , Análise de Variância , Antropologia Física , Antropometria , Tamanho Corporal , Criança , Pré-Escolar , Face/anatomia & histologia , Feminino , Humanos , Lactente , Masculino , Caracteres Sexuais , Adulto Jovem
11.
J Anat ; 221(3): 263-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22747629

RESUMO

As a component of the chondrocranium, the nasal septum influences the anteroposterior dimensions of the facial skeleton. The role of the septum as a facial growth center, however, has been studied primarily in long-snouted mammals, and its precise influence on human facial growth is not as well understood. Whereas the nasal septum may be important in the anterior growth of the human facial skeleton early in ontogeny, the high incidence of nasal septal deviation in humans suggests the septum's influence on human facial length is limited to the early phases of facial growth. Nevertheless, the nasal septum follows a growth trajectory similar to the facial skeleton and, as such, its prolonged period of growth may influence other aspects of facial development. Using computed tomography scans of living human subjects (n = 70), the goal of the present study is to assess the morphological relationship between the nasal septum and facial skeleton in European- and African-derived populations, which have been shown to exhibit early developmental differences in the nasal septal-premaxillary complex. First we assessed whether there is population variation in the size of the nasal septum in European- and African-derived samples. This included an evaluation of septal deviation and the spatial constraints that influence variation in this condition. Next, we assessed the relationship between nasal septal size and craniofacial shape using multivariate regression techniques. Our results indicate that there is significant population variation in septal size and magnitude of septal deviation, both of which are greater in the European-derived sample. While septal deviation suggests a disjunction between the nasal septum and other components of the facial skeleton, we nevertheless found a significant relationship between the size of the nasal septum and craniofacial shape, which appears to largely be a response to the need to accommodate variation in nasal septal size.


Assuntos
População Negra , Ossos Faciais/anatomia & histologia , Septo Nasal/anatomia & histologia , População Branca , Adulto , Idoso , Ossos Faciais/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Septo Nasal/crescimento & desenvolvimento , Tomografia Computadorizada por Raios X , Adulto Jovem
12.
Am J Orthod Dentofacial Orthop ; 139(4): 456-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21457856

RESUMO

INTRODUCTION: During facial growth, the maxilla and mandible translate downward and forward. Although the forward displacement of the maxilla is less than that of the mandible, the interarch relationship of the teeth in the sagittal view during growth remains essentially unchanged. Interdigitation is thought to provide a compensatory (tooth movement) mechanism for maintaining the pattern of occlusion during growth: the maxillary teeth move anteriorly relative to the maxilla while the mandibular teeth move posteriorly relative to the basilar mandible. The purpose of this study was to investigate the hypothesis that the human chin develops as a result of this process. METHODS: Twenty-five untreated subjects from the Iowa Facial Growth Study with Class I normal occlusion were randomly selected based on availability of cephalograms at T1 (mean = 8.32 yr) and T2 (mean = 19.90 yr). Measurements of growth (T2 minus T1) parallel to the Frankfort horizontal (FH) for the maxilla, maxillary dentition, mandible, mandibular dentition, and pogonion (Pg) were made. RESULTS: Relative to Pg (a stable bony landmark), B-point moved posteriorly, on average 2.34 mm during growth, and bony chin development (B-point to Pg) increased concomitantly. Similarly, the mandibular and maxillary incisors moved posteriorly relative to Pg 2.53 mm and 2.76 mm, respectively. A-point, relative to Pg, moved posteriorly 4.47 mm during growth. CONCLUSIONS: Bony chin development during facial growth occurs, in part, from differential jaw growth and compensatory dentoalveolar movements.


Assuntos
Queixo/crescimento & desenvolvimento , Mandíbula/crescimento & desenvolvimento , Maxila/crescimento & desenvolvimento , Processo Alveolar/crescimento & desenvolvimento , Cefalometria , Criança , Arco Dental/crescimento & desenvolvimento , Oclusão Dentária , Dentição , Feminino , Seguimentos , Humanos , Incisivo/anatomia & histologia , Masculino , Mandíbula/anatomia & histologia , Côndilo Mandibular/anatomia & histologia , Maxila/anatomia & histologia , Dente Molar/anatomia & histologia , Osso Nasal/anatomia & histologia
13.
J Anat ; 216(1): 48-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19929910

RESUMO

Facial size reduction and facial retraction are key features that distinguish modern humans from archaic Homo. In order to more fully understand the emergence of modern human craniofacial form, it is necessary to understand the underlying evolutionary basis for these defining characteristics. Although it is well established that the cranial base exerts considerable influence on the evolutionary and ontogenetic development of facial form, less emphasis has been placed on developmental factors intrinsic to the facial skeleton proper. The present analysis was designed to assess anteroposterior facial reduction in a pig model and to examine the potential role that this dynamic has played in the evolution of modern human facial form. Ten female sibship cohorts, each consisting of three individuals, were allocated to one of three groups. In the experimental group (n = 10), microplates were affixed bilaterally across the zygomaticomaxillary and frontonasomaxillary sutures at 2 months of age. The sham group (n = 10) received only screw implantation and the controls (n = 10) underwent no surgery. Following 4 months of post-surgical growth, we assessed variation in facial form using linear measurements and principal components analysis of Procrustes scaled landmarks. There were no differences between the control and sham groups; however, the experimental group exhibited a highly significant reduction in facial projection and overall size. These changes were associated with significant differences in the infraorbital region of the experimental group including the presence of an infraorbital depression and an inferiorly and coronally oriented infraorbital plane in contrast to a flat, superiorly and sagittally infraorbital plane in the control and sham groups. These altered configurations are markedly similar to important additional facial features that differentiate modern humans from archaic Homo, and suggest that facial length restriction via rigid plate fixation is a potentially useful model to assess the developmental factors that underlie changing patterns in craniofacial form associated with the emergence of modern humans.


Assuntos
Evolução Biológica , Suturas Cranianas/crescimento & desenvolvimento , Ossos Faciais/crescimento & desenvolvimento , Envelhecimento/patologia , Animais , Placas Ósseas , Cefalometria/métodos , Humanos , Mandíbula/crescimento & desenvolvimento , Desenvolvimento Maxilofacial/fisiologia , Modelos Animais , Crânio/crescimento & desenvolvimento , Sus scrofa
14.
Dis Model Mech ; 10(7): 909-922, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424158

RESUMO

Gene trap mutagenesis is a powerful tool to create loss-of-function mutations in mice and other model organisms. Modifications of traditional gene trap cassettes, including addition of conditional features in the form of Flip-excision (FlEx) arrays to enable directional gene trap cassette inversions by Cre and Flpe site-specific recombinases, greatly enhanced their experimental potential. By taking advantage of these conditional gene trap cassettes, we developed a generic strategy for generating conditional mutations and validated this strategy in mice carrying a multipurpose allele of the Prdm16 transcription factor gene. We demonstrate that the gene trap insertion creates a null mutation replicating the Pierre Robin sequence-type cleft palate phenotype of other Prdm16 mutant mice. Consecutive breeding to Flpe and Emx1IREScre deleter mice spatially restricted Prdm16 loss to regions of the forebrain expressing the homeobox gene Emx1, demonstrating the utility of the technology for the analysis of tissue-specific gene functions.


Assuntos
Alelos , Proteínas de Ligação a DNA/genética , Marcação de Genes , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Cruzamento , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Genes Reporter , Vetores Genéticos/metabolismo , Cabeça/embriologia , Camundongos , Mutação/genética , Especificidade de Órgãos , Fenótipo
16.
Am J Orthod Dentofacial Orthop ; 130(2): 218-23, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16905067

RESUMO

INTRODUCTION: Conventional orthodontic treatment of vertical or anterior maxillary excess by growth modification can be problematic in children because of the high levels of patient compliance required. The purpose of this preliminary study was to investigate the use of rigid skeletal fixation to modify facial bone growth without compliance. METHODS: Three 30-day old female pigs from the same litter were included in phase I. Pediatric miniplates were rigidly fixated with monocortical screws in the experimental pig to bridge the zygomaticomaxillary suture and both the frontonasal and nasomaxillary sutures, bilaterally. In the sham experimental pig, the same surgical protocol was followed, but miniplates were omitted (ie, screw placement only). In the control pig, surgery was not performed. All 3 pigs were housed and fed a normal diet under identical conditions postoperatively for 63 days; then they were killed, their right hemi-skulls were prepared for and underwent 3-dimensional coordinate landmark analysis, and en-bloc specimens from the zygomaticomaxillary, frontonasal, and nasomaxillary sutures of the left hemi-skulls underwent histologic analysis. Two 50-day-old female pigs from the same litter were used in phase II. The same experimental protocol was followed as before for the experimental pig and the sham experimental pig. Both pigs were fed a normal diet for 105 days; then they were killed, and their skulls were prepared for and underwent 3-dimensional coordinate landmark analysis. RESULTS: Rigid plating restricted zygomaticolacrimal suture length, maxillary bone length, nasal bone length, midfacial breadth, and frontal bone length by an average of -14% to -15% (range, -4% to -36%). No growth differences were noted between the animals in maxillary height, mid-premaxillary length, bregma-lambda length, palatal lengths, or mandibular length. Also, plating the sutures produced a clear depressed concavity in the infraorbital region, altered the alignment of the infraorbital plane lateral to the concavity, inhibited the anterior migration of the maxillary tuberosity, and resulted in raised folding on the bony surface adjacent to the zygomaticomaxillary suture. CONCLUSIONS: Rigidly fixating frontonasomaxillary and zygomaticomaxillary sutures inhibits growth of facial bones and might provide a means of restricting excess growth without having to rely on patient compliance. In addition, these altered growth patterns in the plated pig model produced similar and potentially homologous infraorbital features shared by living humans in comparison with ancestral fossil forms.


Assuntos
Ossos Faciais/crescimento & desenvolvimento , Aparelhos Ortodônticos Funcionais , Ortodontia Interceptora/instrumentação , Animais , Placas Ósseas , Suturas Cranianas/crescimento & desenvolvimento , Feminino , Desenvolvimento Maxilofacial , Modelos Animais , Procedimentos de Ancoragem Ortodôntica , Sus scrofa
17.
Anat Rec (Hoboken) ; 299(12): 1646-1660, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27870345

RESUMO

The zygomatic arch is morphologically complex, providing a key interface between the viscerocranium and neurocranium. It also serves as an attachment site for masticatory muscles, thereby linking it to the feeding apparatus. Though morphological variation related to differential loading is well known for many craniomandibular elements, the adaptive osteogenic response of the zygomatic arch remains to be investigated. Here, experimental data are presented that address the naturalistic influence of masticatory loading on the postweaning development of the zygoma and other cranial elements. Given the similarity of bone-strain levels among the zygoma and maxillomandibular elements, a rabbit and pig model were used to test the hypothesis that variation in cortical bone formation and biomineralization along the zygomatic arch and masticatory structures are linked to increased stresses. It was also hypothesized that neurocranial structures would be minimally affected by varying loads. Rabbits and pigs were raised for 48 weeks and 8 weeks, respectively. In both experimental models, CT analyses indicated that elevated masticatory loading did not induce differences in cortical bone thickness of the zygomatic arch, though biomineralization was positively affected. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements. Varying osteogenic responses in the arch suggests that skeletal adaptation, and corresponding variation in performance, may reside differentially at one level of bony architecture. Thus, it is possible that phenotypic diversity in the mammalian zygoma is due more singularly to natural selection (vs. plasticity). These findings underscore the complexity of the zygomatic arch and, more generally, determinants of skull form. Anat Rec, 299:1646-1660, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Força de Mordida , Mamíferos/anatomia & histologia , Zigoma/anatomia & histologia , Animais , Fenômenos Biomecânicos/fisiologia , Mamíferos/fisiologia , Coelhos , Suínos , Zigoma/fisiologia
18.
Arch Oral Biol ; 60(6): 933-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841069

RESUMO

OBJECTIVES: A thorough understanding of influence of maxillary growth on patterns of mandibular rotation during development is important with regard to the treatment of skeletal discrepancies. In the present study, we examined whether experimentally altered maxillary position has a significant influence on patterns of mandibular rotation in a pig model. DESIGN: Maxillary growth was altered in a sample of n=10 domestic pigs via surgical fixation of the circummaxillary sutures. We compared the experimental group to control and surgical sham samples and assessed the effects of altered maxillary growth on mandibular form using geometric morphometric techniques. We tested for significant differences in mandibular shape between our samples and examined axes of morphological variation. Additionally, we examined whether altered mandibular shape resulting from altered maxillary position was predictably associated with morphological changes to the condylar region. RESULTS: There was a statistically significant difference in mandibular shape between the experimental and control/sham groups. As a result of vertical displacement of the snout, mandibles in the experimental sample resulted in greater anterior rotation when compared to the control/sham pigs. Variation in rotation was correlated with morphological changes in the condyle including the shape of the articular surface and condylar orientation indicative of greater anterior mandibular rotation. CONCLUSIONS: Vertical displacement of the maxilla had a significant effect on mandibular shape by encouraging anterior mandibular rotation. This result has important implications for understanding the effects of altered mandibular posture on condylar remodeling the treatment of skeletal discrepancies such as the correction of hyperdivegent mandibular growth.


Assuntos
Mandíbula/crescimento & desenvolvimento , Maxila/cirurgia , Pontos de Referência Anatômicos , Animais , Modelos Animais de Doenças , Feminino , Mandíbula/anatomia & histologia , Côndilo Mandibular/anatomia & histologia , Côndilo Mandibular/crescimento & desenvolvimento , Rotação , Suínos
19.
Anat Rec (Hoboken) ; 294(1): 68-78, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21157917

RESUMO

The influence of the chondrocranium in craniofacial development and its role in the reduction of facial size and projection in the genus Homo is incompletely understood. As one component of the chondrocranium, the nasal septum has been argued to play a significant role in human midfacial growth, particularly with respect to its interaction with the premaxilla during prenatal and early postnatal development. Thus, understanding the precise role of nasal septal growth on the facial skeleton is potentially informative with respect to the evolutionary change in craniofacial form. In this study, we assessed the integrative effects of the nasal septum and premaxilla by experimentally reducing facial length in Sus scrofa via circummaxillary suture fixation. Following from the nasal septal-traction model, we tested the following hypotheses: (1) facial growth restriction produces no change in nasal septum length; and (2) restriction of facial length produces compensatory premaxillary growth due to continued nasal septal growth. With respect to hypothesis 1, we found no significant differences in septum length (using the vomer as a proxy) in our experimental (n = 10), control (n = 9) and surgical sham (n = 9) trial groups. With respect to hypothesis 2, the experimental group exhibited a significant increase in premaxilla length. Our hypotheses were further supported by multivariate geometric morphometric analysis and support an integrative relationship between the nasal septum and premaxilla. Thus, continued assessment of the growth and integration of the nasal septum and premaxilla is potentially informative regarding the complex developmental mechanisms that underlie facial reduction in genus Homo evolution.


Assuntos
Evolução Biológica , Ossos Faciais/crescimento & desenvolvimento , Hominidae/crescimento & desenvolvimento , Desenvolvimento Maxilofacial/fisiologia , Septo Nasal/crescimento & desenvolvimento , Animais , Ossos Faciais/anatomia & histologia , Feminino , Hominidae/anatomia & histologia , Humanos , Septo Nasal/anatomia & histologia , Sus scrofa
20.
J Hum Evol ; 55(6): 942-51, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842288

RESUMO

Neandertals have been characterized as possessing features indicative of cold-climate adaptation largely based on ecogeographical morphological patterning found in recent humans. Interestingly, one character that deviates from this pattern is a relatively wide nasal aperture. The ecogeographical patterning of the nasal aperture in recent humans would predict instead that Neandertals should exhibit reduced nasal breadth dimensions. To explain this apparent anomaly it has been argued that a reduction in Neandertal nasal breadth was not possible due to dentognathic constraints on their midfaces via large anterior palatal breadth dimensions, especially large intercanine distances. A complicating factor in understanding the relationship between anterior palate breadth and nasal breadth is that both measurements are also correlated with facial prognathism. It is, therefore, unknown to what degree the relationship between anterior palate breadth and nasal breadth in Neandertals is a function of the pleisiomorphic retention of a prognathic facial skeleton. We used path analysis to test for a causal relationship between intercanine breadth and nasal breadth taking into account the potential effect of facial projection and facial prognathism (i.e., basion-nasion length and basion-prosthion length) using a large sample of geographically diverse recent and fossil Homo. Additionally, we examined the ontogenetic relationship between nasal breadth and intercanine breadth using a longitudinal human growth series to determine whether these variables exhibit similar growth trajectories. The results of these analyses indicate a weaker association between intercanine breadth and nasal breadth than expected, and that more variation in nasal breadth can be explained through basion-prosthion length rather than anterior palatal breadth dimensions. Moreover, the ontogenetic development of anterior palate breadth does not correspond to the growth trajectory of the breadth of the nose. These results explain the apparent paradox of wide piriform apertures in generally cooler climate-adapted Neandertals without resorting to dentognathic constraints, and provide additional insight into both the adaptive and nonadaptive (i.e., neutral) basis for Neandertal facial evolution.


Assuntos
Hominidae/anatomia & histologia , Nariz/anatomia & histologia , Palato Duro/anatomia & histologia , Adaptação Fisiológica , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Clima Frio , Feminino , Hominidae/crescimento & desenvolvimento , Humanos , Masculino , Modelos Biológicos , Nariz/diagnóstico por imagem , Nariz/crescimento & desenvolvimento , Palato Duro/diagnóstico por imagem , Palato Duro/crescimento & desenvolvimento , Radiografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA