RESUMO
BACKGROUND: Small-volume resuscitation using hypertonic saline/hydroxyethyl starch 200/0.62 (HS-HES) has been shown to be an effective alternative to the administration of crystalloids or colloids in trauma patients. All i.v. fluids cause dose-related dilutional coagulopathy and show intrinsic effects on the hemostatic system, but only few data refer to functional consequences after small-volume resuscitation. METHODS: Using thrombelastometry (ROTEM), we studied 30 pigs (weighing 35-45 kg) after withdrawal of 60% of blood volume [1484 mL (1369-1624 mL)] and receiving 4 mL/kg HS-HES for compensation of blood loss or 4% gelatin or 6% HES 130/0.4 in a 1:1 ratio to lost blood volume. To compare the ROTEM variables (coagulation time, clot formation time, alpha angle, clot firmness, and fibrinogen polymerization) with bleeding tendency, a hepatic incision was made and blood loss was measured. RESULTS: Median (25th, 75th percentile) fibrinogen polymerization was significantly higher after HS-HES infusion [11 mm (10, 11), P = 0.0034] when compared with administration of 4% gelatin [4.5 mm (3.0, 5.8)] or HES 130/0.4 [3.5 mm (2.3, 4.0)]. Median blood loss after liver incision was 725 mL (900, 375) after HS-HES, 1625 mL (1275, 1950) after 4% gelatin, and 1600 mL (1500, 1800) after 6% HES 130/0.4 (P = 0.004). Hemodynamic stabilization was traceable in all groups but showed differences regarding filling pressures. CONCLUSIONS: Resuscitation from hemorrhagic shock with HS-HES 200/0.62 results in less impairment of clot formation when compared with compensation of blood loss by administering 6% HES 130/0.4 or 4% gelatin.
Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Derivados de Hidroxietil Amido/uso terapêutico , Solução Salina Hipertônica/uso terapêutico , Choque Hemorrágico/terapia , Animais , Volume Sanguíneo , Gelatina/uso terapêutico , Hemodinâmica , Hemostasia , Artéria Pulmonar/fisiologia , Ressuscitação , SuínosRESUMO
BACKGROUND AND PURPOSE: The role of epithelial-mesenchymal transition (EMT) in the poor outcome of EGFR-overexpressing SCCHN was evaluated. MATERIAL AND METHODS: SCCHN cell lines were characterized for their cell morphology and expression of EGFR and the EMT-associated factors E-cadherin, vimentin and Snail1. The migratory potential of cells was assessed in motility assays. Response to irradiation and cetuximab was determined using clonogenic survival assays. RESULTS: High basal expression of E-cadherin but low to absent vimentin expression could be observed in all SCCHN cell lines. Although E-cadherin expression levels did not change after treatment with EGF we observed a significant change in cell morphology resembling EMT. SCCHN cells with high basal levels of Snail1 resulting from constitutive EGFR activation were characterized by mesenchymal-like morphology, elevated migratory potential, reduced sensitivity to irradiation and cetuximab but increased sensitivity to the combined treatment. CONCLUSIONS: Autocrine activation of EGFR leading to EMT is associated with a metastatic phenotype and reduced sensitivity of SCCHN cells to single-modality treatment with cetuximab or irradiation. The potential of Snail1 as biomarker for selection of patients who will mostly benefit from a combination of cetuximab and radiotherapy has to be evaluated in future clinical studies.