Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 6(8): e1001070, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20808890

RESUMO

The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5' and 3' UTRs of mRNAs in the circuit are unusually long and that 5' UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable differentiation states in eukaryotes.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Divisão Celular , Perfilação da Expressão Gênica , Candida albicans/metabolismo , Candidíase/microbiologia , Células-Tronco Embrionárias/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Transcrição Gênica
2.
PLoS Biol ; 7(6): e1000133, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19529758

RESUMO

A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Sítios de Ligação , Candida albicans/genética , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Regulon/genética , Saccharomyces cerevisiae/genética
3.
PLoS Genet ; 5(12): e1000783, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20041210

RESUMO

Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but not its overall output.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Redes Reguladoras de Genes/genética , Candida albicans/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Bases de Dados Genéticas , Técnicas de Inativação de Genes , Biblioteca Gênica , Homeostase/genética , Modelos Biológicos , Fenótipo , Saccharomyces cerevisiae/genética , Transcrição Gênica
4.
BMC Biol ; 8: 49, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20409324

RESUMO

BACKGROUND: As high-throughput technologies rapidly generate genome-scale data, it becomes increasingly important to visually integrate these data so that specific hypotheses can be formulated and tested. RESULTS: We present MochiView, a platform-independent Java software that integrates browsing of genomic sequences, features, and data with DNA motif visualization and analysis in a visually-appealing and user-friendly application. CONCLUSIONS: While highly versatile, the software is particularly useful for organizing, exploring, and analyzing large genomic data sets, such as those from deep RNA sequencing, chromatin immunoprecipitation experiments (ChIP-Seq and ChIP-Chip), and transcriptional profiling. MochiView provides an extensive suite of utilities to identify and to explore connections between these data sets and short sequence motifs present in DNA or RNA.


Assuntos
Sequência de Bases/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Imunoprecipitação da Cromatina/métodos
5.
PLoS Genet ; 1(6): e80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16429164

RESUMO

Analyses of cellular processes in the yeast Saccharomyces cerevisiae rely primarily upon a small number of highly domesticated laboratory strains, leaving the extensive natural genetic diversity of the model organism largely unexplored and unexploited. We asked if this diversity could be used to enrich our understanding of basic biological processes. As a test case, we examined a simple trait: the utilization of di/tripeptides as nitrogen sources. The capacity to import small peptides is likely to be under opposing selective pressures (nutrient utilization versus toxin vulnerability) and may therefore be sculpted by diverse pathways and strategies. Hitherto, dipeptide utilization in S. cerevisiae was solely ascribed to the activity of a single protein, the Ptr2p transporter. Using high-throughput phenotyping and several genetically diverse strains, we identified previously unknown cellular activities that contribute to this trait. We find that the Dal5p allantoate/ureidosuccinate permease is also capable of facilitating di/tripeptide transport. Moreover, even in the absence of Dal5p and Ptr2p, an additional activity--almost certainly the periplasmic asparaginase II Asp3p--facilitates the utilization of dipeptides with C-terminal asparagine residues by a different strategy. Another, as-yet-unidentified activity enables the utilization of dipeptides with C-terminal arginine residues. The relative contributions of these activities to the utilization of di/tripeptides vary among the strains analyzed, as does the vulnerability of these strains to a toxic dipeptide. Only by sampling the genetic diversity of multiple strains were we able to uncover several previously unrecognized layers of complexity in this metabolic pathway. High-throughput phenotyping facilitates the rapid exploration of the molecular basis of biological complexity, allowing for future detailed investigation of the selective pressures that drive microbial evolution.


Assuntos
Variação Genética , Metabolismo , Dipeptídeos/genética , Modelos Genéticos , Oligopeptídeos/genética , Saccharomyces cerevisiae/genética
6.
Mol Biol Cell ; 15(5): 2061-72, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14978213

RESUMO

Heat-shock protein 104 (Hsp104p) is a protein-remodeling factor that promotes survival after extreme stress by disassembling aggregated proteins and can either promote or prevent the propagation of prions (protein-based genetic elements). Hsp104p can be greatly overexpressed without slowing growth, suggesting tight control of its powerful protein-remodeling activities. We isolated point mutations in Hsp104p that interfere with this control and block cell growth. Each mutant contained alterations in the middle region (MR). Each of the three MR point mutations analyzed in detail had distinct phenotypes. In combination with nucleotide binding site mutations, Hsp104p(T499I) altered bud morphology and caused septin mislocalization, colocalizing with the misplaced septins. Point mutations in the septin Cdc12p suppressed this phenotype, suggesting that it is due to direct Hsp104p-septin interactions. Hsp104p(A503V) did not perturb morphology but stopped cell growth. Remarkably, when expressed transiently, the mutant protein promoted survival after extreme stress as effectively as did wild-type Hsp104p. Hsp104p(A509D) had no deleterious effects on growth or morphology but had a greatly reduced ability to promote thermotolerance. That mutations in an 11-amino acid stretch of the MR have such profound and diverse effects suggests the MR plays a central role in regulating Hsp104p function.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Genes Letais/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Choque Térmico/química , Hidrólise , Mutagênese/genética , Fenótipo , Mutação Puntual/genética , Profilinas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Temperatura
7.
Genetics ; 190(2): 511-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095082

RESUMO

Fungi exhibit a large variety of morphological forms. Here, we examine the functions of a deeply conserved regulator of morphology in three fungal species: Saccharomyces cerevisiae, Candida albicans, and Histoplasma capsulatum. We show that, despite an estimated 600 million years since those species diverged from a common ancestor, Wor1 in C. albicans, Ryp1 in H. capsulatum, and Mit1 in S. cerevisiae are transcriptional regulators that recognize the same DNA sequence. Previous work established that Wor1 regulates white-opaque switching in C. albicans and that its ortholog Ryp1 regulates the yeast to mycelial transition in H. capsulatum. Here we show that the ortholog Mit1 in S. cerevisiae is also a master regulator of a morphological transition, in this case pseudohyphal growth. Full-genome chromatin immunoprecipitation experiments show that Mit1 binds to the control regions of the previously known regulators of pseudohyphal growth as well as those of many additional genes. Through a comparison of binding sites for Mit1 in S. cerevisiae, Wor1 in C. albicans, and Wor1 ectopically expressed in S. cerevisiae, we conclude that the genes controlled by the orthologous regulators overlap only slightly between these two species despite the fact that the DNA binding specificity of the regulators has remained largely unchanged. We suggest that the ancestral Wor1/Mit1/Ryp1 protein controlled aspects of cell morphology and that movement of genes in and out of the Wor1/Mit1/Ryp1 regulon is responsible, in part, for the differences of morphological forms among these species.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Fungos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Glicoproteínas de Membrana/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA