Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 50(16): 9149-9161, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35950487

RESUMO

DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.


Assuntos
DNA Girase , DNA Topoisomerases Tipo I , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Antibacterianos/farmacologia
2.
Nucleic Acids Res ; 49(2): 776-790, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33337488

RESUMO

Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαß heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Celulase/biossíntese , Celulase/genética , Cichorium intybus/microbiologia , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Dickeya/genética , Dickeya/fisiologia , Dimerização , Estudos de Associação Genética , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/genética , Movimento (Física) , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Plasmídeos , Poligalacturonase/biossíntese , Poligalacturonase/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Sideróforos/biossíntese , Sideróforos/genética , Transcrição Gênica/genética , Transcriptoma , Virulência/genética
3.
Nucleic Acids Res ; 47(15): e88, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31147705

RESUMO

Small non-coding RNAs (sRNAs) regulate numerous cellular processes in all domains of life. Several approaches have been developed to identify them from RNA-seq data, which are efficient for eukaryotic sRNAs but remain inaccurate for the longer and highly structured bacterial sRNAs. We present APERO, a new algorithm to detect small transcripts from paired-end bacterial RNA-seq data. In contrast to previous approaches that start from the read coverage distribution, APERO analyzes boundaries of individual sequenced fragments to infer the 5' and 3' ends of all transcripts. Since sRNAs are about the same size as individual fragments (50-350 nucleotides), this algorithm provides a significantly higher accuracy and robustness, e.g., with respect to spontaneous internal breaking sites. To demonstrate this improvement, we develop a comparative assessment on datasets from Escherichia coli and Salmonella enterica, based on experimentally validated sRNAs. We also identify the small transcript repertoire of Dickeya dadantii including putative intergenic RNAs, 5' UTR or 3' UTR-derived RNA products and antisense RNAs. Comparisons to annotations as well as RACE-PCR experimental data confirm the precision of the detected transcripts. Altogether, APERO outperforms all existing methods in terms of sRNA detection and boundary precision, which is crucial for comprehensive genome annotations. It is freely available as an open source R package on https://github.com/Simon-Leonard/APERO.


Assuntos
Algoritmos , Escherichia coli/genética , Genoma Bacteriano , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Conjuntos de Dados como Assunto , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Internet , RNA Antissenso/classificação , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/classificação , RNA Bacteriano/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , Salmonella enterica/metabolismo , Análise de Sequência de RNA , Software
4.
Environ Microbiol ; 22(2): 540-556, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782608

RESUMO

Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.


Assuntos
Bactérias/genética , Cromossomos Bacterianos/genética , Plasmídeos/genética , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Fatores de Transcrição/genética
5.
Environ Microbiol ; 21(8): 3063-3075, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170322

RESUMO

Plasmids are mobile DNAs that can adjust host cell functions for their own amplification and dissemination. We identified Quorum sensing flagella small RNA regulator (QfsR), a small RNA, transcribed from the virulence tumour-inducing (Ti) plasmid in the phytopathogen Agrobacterium fabrum. QfsR is widely conserved throughout RepABC plasmids carried by Rhizobiaceae. Target prediction, expression analysis and site-direct mutagenesis experiments showed that QfsR directly pairs within polycistronic mRNAs transcribed from chromosome (genes involved in flagella apparatus) and Ti plasmid (genes involved in conjugative transfer). QfsR leads to a coordinated expression of whole polycistronic mRNA molecules. Whereas a lack of QfsR represses motility, its overproduction increases the quorum sensing signal accumulation and the Ti plasmid conjugative transfer. Based on these observations, we propose QfsR as a hub connecting regulatory networks of motility and plasmid conjugative transfer. To our knowledge, QfsR is the first example of a plasmid-encoded sRNA that controls chromosomal polycistronic gene expression.


Assuntos
Agrobacterium/genética , Cromossomos/fisiologia , Plasmídeos/genética , Percepção de Quorum/fisiologia , RNA Bacteriano/genética , Agrobacterium/metabolismo , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , RNA Bacteriano/metabolismo , Virulência/genética
6.
Environ Microbiol ; 19(5): 1689-1716, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27878915

RESUMO

Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have to deal with stressful conditions, such as acidic, oxidative and osmotic stresses; anaerobiosis; plant defenses; and contact with antimicrobial compounds. These adverse conditions can reduce bacterial survival and compromise disease initiation and propagation. Successful bacterial plant pathogens must detect potential hosts and also coordinate their possibly conflicting programs for survival and virulence. Consequently, these bacteria have a strong and finely tuned capacity for sensing and responding to environmental and plant stimuli. This review summarizes our current knowledge of the signals and genetic circuits that affect survival and virulence factor expression in three important and well-studied plant pathogenic bacteria with wide host ranges and the capacity for long-term environmental survival. These are: Ralstonia solanacerarum, a vascular pathogen that causes wilt disease; Agrobacterium tumefaciens, a biotrophic tumorigenic pathogen responsible for crown gall disease and Dickeya, a brute force apoplastic pathogen responsible for soft-rot disease.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Produtos Agrícolas/microbiologia , Pectobacterium/patogenicidade , Doenças das Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Meio Ambiente , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Estresse Fisiológico/fisiologia , Virulência , Fatores de Virulência/biossíntese
7.
Environ Microbiol ; 18(11): 3651-3672, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26940633

RESUMO

Dickeya species are soft rot disease-causing bacterial plant pathogens and an emerging agricultural threat in Europe. Environmental modulation of gene expression is critical for Dickeya dadantii pathogenesis. While the bacterium uses various environmental cues to distinguish between its habitats, an intricate transcriptional control system coordinating the expression of virulence genes ensures efficient infection. Understanding of this behaviour requires a detailed knowledge of expression patterns under a wide range of environmental conditions, which is currently lacking. To obtain a comprehensive picture of this adaptive response, we devised a strategy to examine the D. dadantii transcriptome in a series of 32 infection-relevant conditions encountered in the hosts. We propose a temporal map of the bacterial response to various stress conditions and show that D. dadantii elicits complex genetic behaviour combining common stress-response genes with distinct sets of genes specifically induced under each particular stress. Comparison of our dataset with an in planta expression profile reveals the combined impact of stress factors and enables us to predict the major stress confronting D. dadantii at a particular stage of infection. We provide a comprehensive catalog of D. dadantii genomic responses to environmentally relevant stimuli, thus facilitating future studies of this important plant pathogen.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Europa (Continente) , Genômica , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Appl Environ Microbiol ; 82(12): 3515-3524, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060117

RESUMO

UNLABELLED: The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE: We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species emerged from a bacterial population by acquiring specific functions that allowed them to outcompete their closest relatives. In conclusion, bacterial species could be defined not only as genomic species but also as ecological species.


Assuntos
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Ácidos Cumáricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Sideróforos/biossíntese , Biotransformação , Meios de Cultura/química , Perfilação da Expressão Gênica , Ferro/metabolismo , Análise em Microsséries , Óperon
9.
Appl Environ Microbiol ; 80(11): 3341-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657856

RESUMO

The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-ß-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-ß-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-ß-ketopropionic acid (HMPKP)-CoA ß-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent ß-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.


Assuntos
Agrobacterium/metabolismo , Coenzima A/metabolismo , Ácidos Cumáricos/metabolismo , Redes e Vias Metabólicas/genética , Agrobacterium/genética , Biotransformação , Hidroxibenzoatos/metabolismo , Plantas/microbiologia
10.
Mol Microbiol ; 86(5): 1085-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043322

RESUMO

GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host-microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA-binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA-regulated functions, including aggressiveness on two plant hosts and degradation of the quorum-sensing signal. The GABA-bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg(203) and Asp(226) of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA-analogue trans-4-aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABA(C) receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA-mediated communication in several host-pathogen interactions.


Assuntos
Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/metabolismo , Nicotiana/microbiologia , Solanum lycopersicum/microbiologia , Ácido gama-Aminobutírico/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Doenças das Plantas/microbiologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de GABA/genética , Receptores de GABA/metabolismo , Relação Estrutura-Atividade , Transcriptoma
11.
PLoS Genet ; 6(2): e1000859, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195515

RESUMO

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Assuntos
Betaproteobacteria/genética , Evolução Molecular , Genoma Bacteriano/genética , Adaptação Fisiológica/genética , Arsênio/metabolismo , Carbono/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Meio Ambiente , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genes Duplicados/genética , Variação Genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Plasmídeos/genética , Prófagos/genética
13.
mBio ; 13(3): e0052422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491820

RESUMO

Dickeya dadantii is a phytopathogenic bacterium that causes soft rot in a wide range of plant hosts worldwide and a model organism for studying virulence gene regulation. The present study provides a comprehensive and annotated transcriptomic map of D. dadantii obtained by a computational method combining five independent transcriptomic data sets: (i) paired-end RNA sequencing (RNA-seq) data for a precise reconstruction of the RNA landscape; (ii) DNA microarray data providing transcriptional responses to a broad variety of environmental conditions; (iii) long-read Nanopore native RNA-seq data for isoform-level transcriptome validation and determination of transcription termination sites; (iv) differential RNA sequencing (dRNA-seq) data for the precise mapping of transcription start sites; (v) in planta DNA microarray data for a comparison of gene expression profiles between in vitro experiments and the early stages of plant infection. Our results show that transcription units sometimes coincide with predicted operons but are generally longer, most of them comprising internal promoters and terminators that generate alternative transcripts of variable gene composition. We characterize the occurrence of transcriptional read-through at terminators, which might play a basal regulation role and explain the extent of transcription beyond the scale of operons. We finally highlight the presence of noncontiguous operons and excludons in the D. dadantii genome, novel genomic arrangements that might contribute to the basal coordination of transcription. The highlighted transcriptional organization may allow D. dadantii to finely adjust its gene expression program for a rapid adaptation to fast-changing environments. IMPORTANCE This is the first transcriptomic map of a Dickeya species. It may therefore significantly contribute to further progress in the field of phytopathogenicity. It is also one of the first reported applications of long-read Nanopore native RNA-seq in prokaryotes. Our findings yield insights into basal rules of coordination of transcription that might be valid for other bacteria and may raise interest in the field of microbiology in general. In particular, we demonstrate that gene expression is coordinated at the scale of transcription units rather than operons, which are larger functional genomic units capable of generating transcripts with variable gene composition for a fine-tuning of gene expression in response to environmental changes. In line with recent studies, our findings indicate that the canonical operon model is insufficient to explain the complexity of bacterial transcriptomes.


Assuntos
Enterobacteriaceae , Regulação Bacteriana da Expressão Gênica , Bactérias , Dickeya , Enterobacteriaceae/metabolismo
14.
Microorganisms ; 9(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498890

RESUMO

Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.

15.
Front Microbiol ; 12: 687484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248909

RESUMO

Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investigated the involvement of the RNA chaperones Hfq and ProQ in the production of the main D. dadantii virulence functions. Phenotypic assays on the hfq and proQ mutants showed that inactivation of hfq resulted in a growth defect, a modified capacity for biofilm formation and strongly reduced motility, and in the production of degradative extracellular enzymes (proteases, cellulase, and pectate lyases). Accordingly, the hfq mutant failed to cause soft rot on chicory leaves. The proQ mutant had reduced resistance to osmotic stress, reduced extracellular pectate lyase activity compared to the wild-type strain, and reduced virulence on chicory leaves. Most of the phenotypes of the hfq and proQ mutants were related to the low amounts of mRNA of the corresponding virulence factors. Complementation of the double mutant hfq-proQ by each individual protein and cross-complementation of each chaperone suggested that they might exert their effects via partially overlapping but different sets of targets. Overall, it clearly appeared that the two Hfq and ProQ RNA chaperones are important regulators of pathogenicity in D. dadantii. This underscores that virulence genes are regulated post-transcriptionally by non-coding RNAs.

16.
BMC Microbiol ; 10: 53, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20167112

RESUMO

BACKGROUND: Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS: In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION: These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Oxirredutases/genética , Sequência de Aminoácidos , Arsenitos/metabolismo , Arsenitos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica/métodos , Genes Bacterianos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação , Óperon , Oxalobacteraceae/enzimologia , Oxirredutases/biossíntese , Oxirredutases/metabolismo , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
17.
FEMS Microbiol Ecol ; 97(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33206969

RESUMO

Agrobacterium fabrum C58 is a plant-associated bacterium that is able to denitrify under anoxic conditions. The cluster of denitrification genes harbored by this strain has been well characterized. It includes nir and nor operons encoding nitrite and nitric oxide reductases, respectively. However, the reductase involved in nitrate reduction has not yet been studied and little information is available on denitrification regulators in A. fabrum C58. In this study, we aimed to (i) characterize the nitrate reductase, (ii) determine its role in A. fabrum C58 fitness and root colonization and (ii) reveal the contribution of small RNA on denitrification regulation. By constructing a mutant strain defective for napA, we demonstrated that the reduction of nitrate to nitrite was catalyzed by the periplasmic nitrate reductase, NapA. We evidenced a positive role of NapA in A. fabrum C58 fitness and suggested that A. fabrum C58 is able to use components exuded by plant roots to respire anaerobically. Here, we showed that NorR small RNA increased the level of norCBQ mRNA and a decrease of NorR is correlated with a decrease in N2O emission. Together, our results underscore the importance of understanding the denitrification pathway at the strain level in order to develop strategies to mitigate N2O production at the microbial community level.


Assuntos
Agrobacterium , RNA Antissenso , Agrobacterium/genética , Nitrato Redutase/genética , Nitratos
18.
J Bacteriol ; 190(22): 7508-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18790868

RESUMO

Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya chrysanthemi/fisiologia , Magnoliopsida/microbiologia , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pegada de DNA , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
19.
20.
PLoS One ; 6(5): e20269, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637857

RESUMO

BACKGROUND: Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. RESULTS: We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. CONCLUSIONS: We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria.


Assuntos
Arabidopsis/microbiologia , Enterobacteriaceae/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Pectobacterium/genética , Pectobacterium/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Padrões de Referência , Homologia de Sequência do Ácido Nucleico , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA