Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1812(6): 699-702, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447386

RESUMO

Diabetes mellitus is associated with increased risk for cardiovascular disorders, which are major causes of mortality in this disease. Hyperhomocysteinemia, defined by high plasma homocysteine levels, is an independent risk factor for the development of cardiovascular diseases. Type 2 diabetic patients have higher circulating homocysteine levels than healthy subjects and these levels are even higher in plasma of obese than nonobese diabetic patients. Homocysteine metabolism that has been studied in 2 animal models of type 2 diabetes with obesity led to conflicting data. The aim of the present study was to analyze homocysteine metabolism in a spontaneous nonobese model of type 2 diabetes, the Goto-Kakizaki rats at various successive and well characterized stages of the disease: during early postnatal normoglycemia, at the onset of hyperglycemia (around weaning), and during chronic mild hyperglycemia with progressive insulin resistance. Compared to age-matched Wistar controls, Goto-Kakizaki rats showed lower plasma levels of homocysteine and a falling trend in its major byproduct antioxidant, glutathione, from the prediabetic stage onwards. Concomitantly, Goto-Kakizaki rats exhibited increased liver activity of cystathionine beta synthase, which catalyzes the condensation of homocysteine with serine in the first step of the transsulfuration pathway. These results emphasize a strong association between homocysteine metabolism and insulin via the first step of the hepatic transsulfuration pathway in Goto-Kakizaki rats.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Homocisteína/sangue , Fatores Etários , Animais , Peso Corporal , Modelos Animais de Doenças , Glutationa/metabolismo , Resistência à Insulina , Masculino , Ratos , Ratos Wistar
2.
Adv Exp Med Biol ; 654: 479-500, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20217511

RESUMO

Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective beta-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of beta-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased beta-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased beta-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of beta-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Sistema Endócrino , Epigênese Genética , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Modelos Biológicos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio
3.
Diabetes ; 55(6): 1625-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731824

RESUMO

The molecular pathways leading to islet fibrosis in diabetes are unknown. Therefore, we studied gene expression in islets of 4-month-old Goto-Kakizaki (GK) and Wistar control rats. Of 71 genes found to be overexpressed in GK islets, 24% belong to extracellular matrix (ECM)/cell adhesion and 34% to inflammatory/immune response families. Based on gene data, we selected several antibodies to study fibrosis development during progression of hyperglycemia by immunohistochemistry. One-month-old GK and Wistar islets appeared to be similar. Two-month-old GK islets were strongly heterogenous in terms of ECM accumulation compared with Wistar islets. GK islet vascularization, labeled by von Willebrand factor, was altered after 1 month of mild hyperglycemia. Numerous macrophages (major histocompatibility complex class II(+) and CD68(+)) and granulocytes were found in/around GK islets. These data demonstrate that marked inflammatory reaction accompanies GK islet fibrosis and suggest that islet alterations in this nonobese model of type 2 diabetes develop in a way reminiscent of microangiopathy.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Perfilação da Expressão Gênica , Ilhotas Pancreáticas/patologia , Animais , Adesão Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibrose , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Imuno-Histoquímica , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Brain Res ; 1038(1): 22-31, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15748869

RESUMO

The influence of diabetes mellitus on brain pathology is increasingly recognized. Previous contributions of our laboratory demonstrated in models of type 1 diabetes (nonobese diabetic and streptozotocin (STZ)-treated mice), a marked astrogliosis and neurogenesis deficit in hippocampus and increased expression of hypothalamic neuropeptides. In the present investigation, we further analyzed alterations of astroglia and neurons in the hippocampus of mice 1 month after STZ-induced diabetes. Results showed that these STZ-diabetic mice presented: (a) increased number of astrocytes positive for apolipoprotein-E (Apo-E), a marker of ongoing neuronal dysfunction; (b) abnormal expression of early gene products associated with neuronal activation, including a high number of Jun + neurons in CA1 and CA3 layers and dentate gyrus, and of Fos-expressing neurons in CA3 layer; (c) augmented activity of NADPH-diaphorase, linked to oxidative stress, in CA3 region. These data support the concept that uncontrolled diabetes leads to hippocampal pathology, which adjoin to changes in other brain structures such as hypothalamus and cerebral cortex.


Assuntos
Apolipoproteínas E/metabolismo , Astrócitos/patologia , Diabetes Mellitus Experimental/patologia , Hipocampo/patologia , Neurônios/patologia , Animais , Astrócitos/enzimologia , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/enzimologia , Feminino , Hipocampo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Desidrogenase/metabolismo , Neurônios/enzimologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estreptozocina
5.
Trends Endocrinol Metab ; 13(5): 209-14, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12185667

RESUMO

Type 1 diabetes mellitus is a T-cell-mediated autoimmune disease that results in the destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. In spite of extensive genetic and immunological studies, mainly performed in the non-obese diabetic (NOD) spontaneous mouse model, the etiology of the autoimmune attack remains unknown. Several autoantigens have been identified and numerous studies have suggested a role for defective regulation of immune function. However, this account does not explain why the autoimmune process specifically affects the insulin-producing beta cells. Thus, abnormal immune regulation might explain the predisposition to autoimmunity in general, but additional factors should then determine the target of the autoimmune attack. Here, we review the evidence that abnormalities in islet cell differentiation and function exist that might trigger the immune system towards beta-cell autoimmunity in humans and NOD mice.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Animais , Animais Recém-Nascidos , Autoantígenos/genética , Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/genética , Feminino , Predisposição Genética para Doença , Humanos , Ilhotas Pancreáticas/anormalidades , Camundongos , Camundongos Endogâmicos NOD , Estado Pré-Diabético/genética , Estado Pré-Diabético/imunologia , Gravidez
6.
Autoimmunity ; 35(7): 449-55, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12685873

RESUMO

In the Nonobese diabetic (NOD) mouse, a spontaneous model of type 1 diabetes, the pathogenic process is classically thought to start at 3-4 weeks of age with an accumulation of antigen-presentingcells (APC), especially CD11c+ dendritic cells (DC), around the pancreatic islets of Langerhans. Concomitantly, hyperinsulinemia and slight hyperglucagonemia are observed, which may be either the cause or consequence of the initial APC infiltration. To determine whether infiltrating DC can affect islet activity in control (C57BL/6) and NOD mice, we performed experiments in which islets and DC were isolated and co-cultured. We first showed that, immediately after isolation, islets from 8-week-old prediabetic NOD mice had significantly higher insulin and glucagon contents than those from C57BL/6 controls. Moreover, as is the case in vivo, prediabetic NOD mouse islets secrete more insulin in vitro at 11.1 mM glucose than C57BL/6 ones. In DC-islet co-cultures, insulin secretion was significantly increased for NOD mice only, while that of glucagon was not significantly affected. These findings indicate that NOD DC are good candidates for stimulating the NOD mouse beta-cell hyperactivity that is observed both in vivo and in vitro, and might, consequently, sensitize NOD islets to an autoimmune attack.


Assuntos
Células Dendríticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Estado Pré-Diabético/metabolismo , Animais , Linhagem Celular , Feminino , Glucagon/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Radioimunoensaio
7.
Brain Res ; 957(2): 345-53, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12445977

RESUMO

Diabetes can be associated with cerebral dysfunction in humans and animal models of the disease. Moreover, brain anomalies and alterations of the neuroendocrine system are present in type 1 diabetes (T1D) animals, such as the spontaneous nonobese diabetic (NOD) mouse model and/or the pharmacological streptozotocin (STZ)-induced model. Because of the prevalent role of astrocytes in cerebral glucose metabolism and their intimate connection with neurones, we investigated hippocampal astrocyte alterations in prediabetic and diabetic NOD mice and STZ-treated diabetic mice. The number and cell area related to the glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were quantified in the stratum radiatum region of the hippocampus by computerized image analysis in prediabetic (2, 4 and 8 weeks of age) and diabetic (16-week-old) NOD female mice, age and sex-matched lymphocyte-deficient NODscid and C57BL/6 control mice and, finally, STZ-induced diabetic and vehicle-treated nondiabetic 16-week-old C57BL/6 female mice. Astrocyte number was higher early in life in prediabetic NOD and NODscid mice than in controls, when transient hyperinsulinemia and low glycemia were found in these strains. The number and cell area of GFAP(+) cells further increased after the onset of diabetes in NOD mice. Similarly, in STZ-treated diabetic mice, the number of GFAP(+) cells and cell area were higher than in vehicle-treated mice. In conclusion, astrocyte changes present in genetic and pharmacological models of T1D appear to reflect an adaptive process to alterations of glucose homeostasis.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Gliose/fisiopatologia , Hipocampo/fisiopatologia , Regulação para Cima/genética , Fatores Etários , Animais , Astrócitos/patologia , Glicemia/efeitos dos fármacos , Glicemia/genética , Tamanho Celular/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Glucose/metabolismo , Hipocampo/patologia , Homeostase/fisiologia , Hiperinsulinismo/genética , Imuno-Histoquímica , Insulina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Regulação para Cima/efeitos dos fármacos
8.
ILAR J ; 45(3): 237-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15229372

RESUMO

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/etiologia , Camundongos Endogâmicos NOD , Sistemas Neurossecretores/imunologia , Animais , Autoantígenos/análise , Autoimunidade/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Masculino , Camundongos
9.
PLoS One ; 9(2): e90045, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587207

RESUMO

Regenerating (REG) proteins are associated with islet development, ß-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3α, 3ß and 3γ, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3ß expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3ß mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious microenvironment.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Litostatina/genética , Litostatina/metabolismo , Animais , Quimiocinas/sangue , Quimiocinas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Macrófagos/metabolismo , Masculino , Proteínas Associadas a Pancreatite , Ratos , Ratos Wistar
10.
Rev Diabet Stud ; 7(1): 36-46, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20703437

RESUMO

BACKGROUND: Unlike other strains, spontaneously type 1 non-obese diabetic (NOD) experience transient hyperinsulinemia after weaning. The same applies for NOD/SCID mice, which lack functional lymphocytes, and unlike NOD mice, do not develop insulitis and diabetes like NOD mice. AIMS: Given that beta-cell stimulation is a natural feature of gestation, we hypothesized that glucose homeostasis is disturbed in gestate pre-diabetic NOD and non-diabetic NOD/SCID mice, which may accelerate the onset of diabetes and increase diabetes prevalence. METHODS: During gestation and postpartum, mice were analyzed under basal feed conditions followed by glucose injection (1 g/kg, i.p.) after overnight fast, using glucose tolerance test (GTT). Glycemia, corticosteronemia, blood and pancreatic insulin, glucagon levels, islet size, and islet morphology were evaluated. Glycemia and mortality were assessed after successive gestations in NOD mice mated for the first time at 2 different ages. RESULTS: 1. Basal glucagonemia rose markedly in first-gestation fed NOD mice. 2. beta-cell hyperactivity was present earlier in first-gestation non-diabetic fasted NOD and NOD/SCID mice than in age-matched C57BL/6 mice, assessed by increased insulin/glucose ratio after GTT. 3. Overnight fasting increased corticosteronemia rapidly and sharply in pre-diabetic gestate NOD and NOD/SCID mice. 4. Islet size increased in non-diabetic gestate NOD mice compared with C57BL/6 mice. 5. Successive gestations accelerated diabetes onset, and contributed to increased mortality in NOD mice. CONCLUSIONS: First-gestation pre-diabetic NOD and non-diabetic NOD/SCID mice exhibited beta-cell hyperactivity and deregulation of glucagon and/or corticosterone secretion. This amplified normally occurring insulin resistance, further exhausted maternal beta-cells, and accelerated diabetes in NOD mice.


Assuntos
Glicemia/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Linfócitos/imunologia , Estado Pré-Diabético/fisiopatologia , Gravidez em Diabéticas/fisiopatologia , Animais , Corticosterona/sangue , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Glucagon/sangue , Teste de Tolerância a Glucose , Homeostase , Insulina/análise , Insulina/sangue , Resistência à Insulina , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/química , Estado Pré-Diabético/imunologia , Estado Pré-Diabético/patologia , Gravidez , Gravidez em Diabéticas/imunologia , Gravidez em Diabéticas/patologia
11.
Exp Neurol ; 222(1): 125-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20045412

RESUMO

Metabolic and vascular consequences of diabetes mellitus induce several CNS complications. The dentate gyrus of the hippocampus, a well-recognized target for diabetic alterations, is a neurogenic area associated with memory and learning processes. Here, we explored the hippocampal neurogenesis and its microenvironment (astrocytes, vascularisation and glucocorticoid influence) in a spontaneous model of type 2 diabetes, the Goto-Kakizaki rat. The number of proliferative Ki67(+) cells and young doublecortin(+) neurons was 2-fold higher in the hippocampus from diabetic rats than in normoglycemic control Wistar at 4 months of age. However, there was no difference in cell survival, studied 3 weeks after bromodeoxyuridine administration. Labeling of endothelial cells against von Willebrand factor, demonstrated a 50% decrease in the granular cell layer fractional area covered by blood vessels and a diminished capillary branching in diabetic rats. Finally, Goto-Kakizaki rats exhibited decreased glucocorticoid receptor immunolabeling in CA1, associated with higher corticosteronemia. In conclusion, diabetic rats showed increased cell proliferation and neuronal differentiation without concomitant survival modification. A high proliferation rate, potentially reflecting a compensatory mechanism for neuronal suffering, also exists in various pathological situations. However, endothelial alteration induced by chronic hyperglycemia, hyperleptinemia and insulin resistance and associated with deleterious glucocorticoid effects might impair effective neurogenesis in diabetic Goto-Kakizaki rats.


Assuntos
Giro Denteado/fisiopatologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neurogênese/fisiologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Animais , Glicemia , Peso Corporal , Bromodesoxiuridina/metabolismo , Proliferação de Células , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Células Endoteliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Insulina/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Fator de von Willebrand/metabolismo
12.
PLoS One ; 4(8): e6500, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19654863

RESUMO

BACKGROUND: Oxidative stress (OS), through excessive and/or chronic reactive oxygen species (ROS), is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1) gene expression was analyzed by qRT-PCR; 2) insulin secretion rate was measured; 3) ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4) antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H(2)O(2) or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels) of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. CONCLUSIONS: The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Experimental/patologia , Ilhotas Pancreáticas/fisiopatologia , Estresse Oxidativo , Regulação para Cima , Animais , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar
13.
PLoS One ; 4(9): e6963, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19742300

RESUMO

BACKGROUND: Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra). METHODOLOGY/PRINCIPAL FINDINGS: Gene expression was analyzed by quantitative RT-PCR on islets isolated from 10-week-old diabetic GK and control Wistar rats. Furthermore, GK rats were treated s.c twice daily with IL-1Ra (Kineret, Amgen, 100 mg/kg/day) or saline, from 4 weeks of age onwards (onset of diabetes). Four weeks later, islet gene analysis and pancreas immunochemistry were performed. Thirty-two genes were selected encoding molecules involved in endothelial cell activation, particularly fibrinolysis, vascular tone, OS, angiogenesis and also inflammation. All genes except those encoding angiotensinogen and epoxide hydrolase (that were decreased), and 12-lipoxygenase and vascular endothelial growth factor (that showed no change), were significantly up-regulated in GK islets. After IL-1Ra treatment of GK rats in vivo, most selected genes implied in endothelium/OS/immune cells/fibrosis were significantly down-regulated. IL-1Ra also improved islet vascularization, reduced fibrosis and ameliorated glycemia. CONCLUSIONS/SIGNIFICANCE: GK rat islets have increased mRNA expression of markers of early islet endothelial cell activation, possibly triggered by several metabolic factors, and also some defense mechanisms. The beneficial effect of IL-1Ra on most islet endothelial/OS/immune cells/fibrosis parameters analyzed highlights a major endothelial-related role for IL-1 in GK islet alterations. Thus, metabolically-altered islet endothelium might affect the beta-cell microenvironment and contribute to progressive type 2 diabetic beta-cell dysfunction in GK rats. Counteracting islet endothelial cell inflammation might be one way to ameliorate/prevent beta-cell dysfunction in type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/citologia , Regulação da Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Antioxidantes/metabolismo , Inflamação , Interleucina-1/metabolismo , Masculino , Modelos Biológicos , Estresse Oxidativo , Ratos , Ratos Wistar
14.
Rev Diabet Stud ; 4(3): 185-94, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18084676

RESUMO

The effects of bromocriptine (10 mg/kg), known to inhibit prolactin secretion and lower autoimmune processes, were studied on glucose homeostasis in non-fasted non-obese diabetic mice, a spontaneous model of type 1 diabetes. Hyperglycemia was observed 120 and 240 min after i.p. but not s.c. injection. Bromocriptine administration i.p. led to rapid and marked hyperglycemia characterized by sexual dimorphism with males having higher glycemia than females. Bromocriptine induced a rapid but transient decrease in insulinemia in males only and biphasic increases in glucagon levels and a sustained stimulatory effect on circulating corticosterone in both sexes. Bromocriptine-induced hyperglycemia involved D2-dopaminergic receptors, as demonstrated by the inhibitory effect of the D2-dopamine antagonist, metoclopramide (10 mg/kg). Simultaneous injection of bromocriptine and metoclopramide also blocked the rise in blood corticosterone. In conclusion, by inducing hyperglycemia, i.p. bromocriptine administration to prediabetic autoimmune mice may counteract its beneficial anti-immunostimulatory effects.

15.
Diabetes ; 56(9): 2356-70, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17579207

RESUMO

Activation of the innate immune system in obesity is a risk factor for the development of type 2 diabetes. The aim of the current study was to investigate the notion that increased numbers of macrophages exist in the islets of type 2 diabetes patients and that this may be explained by a dysregulation of islet-derived inflammatory factors. Increased islet-associated immune cells were observed in human type 2 diabetic patients, high-fat-fed C57BL/6J mice, the GK rat, and the db/db mouse. When cultured islets were exposed to a type 2 diabetic milieu or when islets were isolated from high-fat-fed mice, increased islet-derived inflammatory factors were produced and released, including interleukin (IL)-6, IL-8, chemokine KC, granulocyte colony-stimulating factor, and macrophage inflammatory protein 1alpha. The specificity of this response was investigated by direct comparison to nonislet pancreatic tissue and beta-cell lines and was not mimicked by the induction of islet cell death. Further, this inflammatory response was found to be biologically functional, as conditioned medium from human islets exposed to a type 2 diabetic milieu could induce increased migration of monocytes and neutrophils. This migration was blocked by IL-8 neutralization, and IL-8 was localized to the human pancreatic alpha-cell. Therefore, islet-derived inflammatory factors are regulated by a type 2 diabetic milieu and may contribute to the macrophage infiltration of pancreatic islets that we observe in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Ilhotas Pancreáticas/patologia , Macrófagos/patologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Contagem de Células , Feminino , Antígenos HLA-B/análise , Humanos , Ilhotas Pancreáticas/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Neoplasias/cirurgia
16.
Eur J Neurosci ; 23(6): 1539-46, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553617

RESUMO

Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gyrus. Hippocampal neurogenesis is also deficient in diabetic mice, which led us to study whether the selective serotonin reuptake inhibitor fluoxetine influences cell proliferation in streptozotocin-diabetic animals. Diabetic and control C57BL/6 mice received fluoxetine (10 mg/kg/day, i.p., 10 days) and dentate gyrus cell proliferation was measured after a single injection of 5-bromo-2'-deoxyuridine (BrdU). Diabetic mice showed reduced cell proliferation. Fluoxetine treatment, although having no effect in controls, corrected this parameter in diabetic mice. The phenotype of newly generated cells was analysed by confocal microscopy after seven daily BrdU injections, using Tuj-1/beta-III tubulin as a marker for immature neurones and glial fibrillary acidic protein for astrocytes. In controls, the proportion of Tuj-1-BrdU-positive cells over total BrdU cells was approximately 70%. In vehicle-treated diabetic mice, immature neurones decreased to 56% and fluoxetine brought this proportion back to control values without affecting astrocytes. Therefore, fluoxetine preferentially increased the proliferation of cells with a neuronal phenotype. In addition, neurones were counted in the hilus of the dentate gyrus; a 30% decrease was found in diabetic mice compared with controls, whereas this neuronal loss was prevented by fluoxetine. In conclusion, fluoxetine treatment restored neuroplasticity-related hippocampal alterations of diabetic mice. These findings may be potentially important to counteract diabetes-associated depression in humans.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Diabetes Mellitus Experimental/patologia , Fluoxetina/farmacologia , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Bromodesoxiuridina , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/ultraestrutura , Imunofluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neuroglia/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia
17.
Cell Mol Neurobiol ; 26(4-6): 943-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16807785

RESUMO

1. A recently recognized complication of uncontrolled diabetes mellitus is the encephalopathy involving, among other regions, the hippocampus. Since estrogens bring neuroprotection in cases of brain injury and degenerative diseases, we have studied if estradiol (E2) administration counteracts some hippocampal abnormalities of streptozotocin (STZ)-diabetic adult mice. 2. We first report the ability of E2 to modulate neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) of diabetic mice. Using bromodeoxyuridine (BrdU) to label newly generated cells, a strong reduction in cell proliferation was obtained in DG and SVZ of mice sacrificed 20 days after STZ administration. The reduction was completely relieved by 10 days of E2 pellet implantation, which increased 30-fold the circulating E2 levels. 3. Diabetic mice also showed abnormal expression of astrocyte markers in hippocampus. Thus, increased number of GFAP(+) cells, indicative of astrogliosis, and increased number of apolipoprotein-E (Apo-E)(+) astrocytes, a marker of ongoing neuronal dysfunction, was found in stratum radiatum below the CA1 hippocampal subfield of diabetic mice. Both parameters were reverted to normal by the E2 regime that upregulated cell proliferation. 4. The studies demonstrated that hippocampal neuropathology of uncontrolled diabetes is a reversible condition and sensitive to estrogen treatment. Studies in animal models may open up new venues for understanding the beneficial role of steroid hormones in diabetic encephalopathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estradiol/uso terapêutico , Hipocampo/patologia , Animais , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Rev Diabet Stud ; 2(2): 75-83, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17491682

RESUMO

In the prediabetic nonobese diabetic (NOD) mouse, a spontaneous model of type 1 diabetes, we previously reported transient postweaning hyperinsulinemia followed by progressive islet hyperplasia. A modified in situ hybridization technique was used to determine whether these effects were accompanied by changes in insulin transcriptional activity as a function of age. We found that NOD neonates express higher levels of preproinsulin II primary transcripts than age-matched C57BL/6 mice, but this difference disappeared within the first wk of age. To manipulate insulin transcriptional activity in NOD neonates, NOD mothers were treated with insulin during the last two wk of gestation. A down-regulation of beta-cell hyperactivity was observed in female NOD neonates but not in male neonates. By contrast, the same insulin treatment applied to NODscid (severe combined immunodeficiency) mothers, devoid of functional lymphocytes but showing like NOD mice postweaning hyperinsulinemia, increased transcriptional beta-cell activity in both sexes of neonates. In conclusion, NOD mice exhibit successive and transient signs of beta-cell hyperactivity, reflected as early as birth by high transcriptional preproinsulin II activity and later, from weaning to around 10 wk of age, by hyperinsulinemia. Of note, when thinking in terms of in utero disease programming, the NOD neonatal transcriptional beta-cell hyperactivity could be modulated by environmental (maternal and/or fetal) factors.

19.
Discov Med ; 4(23): 344-50, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20704972

RESUMO

Extract: Epidemiologists have estimated that, by the year 2025, 250-300 million individuals worldwide will have diabetes mellitus, which consists of variable degrees of insulin-producing beta-cell dysfunction that is responsible for hyperglycemia (high level of sugar in the blood). The predominant form is type 2 diabetes (T2D), also called noninsulin-dependent diabetes mellitus (NIDDM), which is associated with insulin resistance (cells stop responding to insulin) and mainly affects obesity-prone mature adults. By contrast, type 1 diabetes (T1D) or insulin-dependent diabetes mellitus (IDDM), the less common form (characterized by a lack of insulin), also described as autoimmune diabetes, is predominantly observed in children and young adults. However, for several years, the clinical features of diabetes have been changing, as demonstrated by the late appearance of autoimmune signs that are characteristic of T1D, in adults initially diagnosed as having T2D (called latent autoimmune diabetes of adults or LADA), and of T2D in children or young adults. Intriguingly, accumulating evidence indicates that T2D and related obesity are linked to inflammation.

20.
Rev Diabet Stud ; 1(4): 198-206, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-17491705

RESUMO

Studies aimed at the understanding of the multifactorial development of autoimmune diabetes have made substantial contributions toward elucidating the molecular mechanisms that open the road to an effective prevention of defective immune responses. Immunomodulatory regimens capable of inducing tolerance are shown to be effective even in the reversal of established autoimmune diabetes in animal models. Experimental trials including the reeducation of autoreactive T cells, depletion of macrophages, dendritic cells, and T cells, as well as the use of monoclonal antibodies, have yielded encouraging results, but have not yet been translated into beneficial clinical outcomes. In addition, we are now seeing an emergence of promising new directions aimed at the induction of islet regeneration by endogenous factors, suggesting that the repair of pancreatic tissue is possible without the need for an engraftment of donor tissue. These recent waves of technological progress have injected new hope for a combined therapy to offer diabetic patients long-term benefits of insulin independence. This article reviews the latest findings on diabetic pathogenesis and discusses promising avenues to tolerance induction and islet regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA