RESUMO
Photon management plays a vital role in the power conversion efficiency of III-V semiconductor solar cells. However, the photon recycling characteristics of GaAs-based multi-quantum-well (MQW) solar cells employed different optical designs had yet been fully explored. In this work, we investigate the impact of the spectrally selective filter (SSF) and distributed Bragg reflector (DBR) on the photovoltaic characteristics of single-junction, strain-balanced In0.1Ga0.9As/ GaAs0.85P0.15 MQW solar cells. Specifically, the SSFs with cutoff wavelengths of 880, 910, and 940â nm are designed and implemented on MQW solar cells with and without the incorporation of a rear DBR. Photon confinement in the vertical direction is verified based on the characterizations of reflectance, electroluminescence, and external quantum efficiency. We show that the photon confinement reduces the saturation current density, up to 26 times and 3 times for the 880â nm SSF-MQW and SSF-MQW-DBR devices, respectively, compared to that of the 940â nm devices. Furthermore, by comparing the SSF-MQW-DBR solar cells under simulated one-sun and concentrated illumination conditions, the open-circuit voltage exhibits a maximal net increase for the 910â nm SSF due to tradeoff between the short-circuit and saturation current density. The proposed SSF design may offer a viable approach to boost the performance of GaAs-based MQW solar cells.
RESUMO
Biomimetic nanostructures have shown to enhance the optical absorption of Ga0.5In0.5P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO2) on top of titanium dioxide (TiO2) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO2 layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.
RESUMO
Biomimetic nanostructures have shown to enhance the optical absorption of Ga(0.5)In(0.5)P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO(2)) on top of titanium dioxide (TiO(2)) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO(2) layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.