Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957421

RESUMO

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS-EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS-EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS-EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS-EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS-EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS-EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS-EEG data analyses in future research.


Assuntos
Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Neuroimagem Funcional , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Biomed Eng Online ; 17(1): 180, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514303

RESUMO

The study presents a recursive least-squares estimation method with an exponential forgetting factor for noise removal in functional near-infrared spectroscopy data and extraction of hemodynamic responses (HRs) from the measured data. The HR is modeled as a linear regression form in which the expected HR, the first and second derivatives of the expected HR, a short-separation measurement data, three physiological noises, and the baseline drift are included as components in the regression vector. The proposed method is applied to left-motor-cortex experiments on the right thumb and little finger movements in five healthy male participants. The algorithm is evaluated with respect to its performance improvement in terms of contrast-to-noise ratio in comparison with Kalman filter, low-pass filtering, and independent component method. The experimental results show that the proposed model achieves reductions of 77% and 99% in terms of the number of channels exhibiting higher contrast-to-noise ratios in oxy-hemoglobin and deoxy-hemoglobin, respectively. The approach is robust in obtaining consistent HR data. The proposed method is applied for both offline and online noise removal.


Assuntos
Análise de Dados , Hemodinâmica , Razão Sinal-Ruído , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Encéfalo/fisiologia , Humanos , Modelos Lineares , Masculino
3.
Sensors (Basel) ; 17(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182570

RESUMO

Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

4.
Neuroimage ; 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25783206

RESUMO

The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infrared spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. While here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging.

5.
Neuroimage ; 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25241906

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

6.
Exp Brain Res ; 232(2): 555-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24258529

RESUMO

In this paper, a functional near-infrared spectroscopy (fNIRS)-based online binary decision decoding framework is developed. Fourteen healthy subjects are asked to mentally make "yes" or "no" decisions in answers to the given questions. For obtaining "yes" decoding, the subjects are asked to perform a mental task that causes a cognitive load on the prefrontal cortex, while for making "no" decoding, they are asked to relax. Signals from the prefrontal cortex are collected using continuous-wave near-infrared spectroscopy. It is observed and verified, using the linear discriminant analysis (LDA) and the support vector machine (SVM) classifications, that the cortical hemodynamic responses for making a "yes" decision are distinguishable from those for making a "no" decision. Using mean values of the changes in the concentration of hemoglobin as features, binary decisions are classified into two classes, "yes" and "no," with an average classification accuracy of 74.28% using LDA and 82.14% using SVM. These results demonstrate and suggest the feasibility of fNIRS for a brain-computer interface.


Assuntos
Interfaces Cérebro-Computador , Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Sistemas On-Line , Adulto , Análise Discriminante , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxiemoglobinas/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte , Adulto Jovem
7.
ScientificWorldJournal ; 2014: 716740, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24977217

RESUMO

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations in order to verify the analytical results are given.


Assuntos
Algoritmos , Modelos Teóricos , Dinâmica não Linear , Oscilometria/métodos , Simulação por Computador , Transferência de Energia
8.
Comput Biol Med ; 179: 108840, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004047

RESUMO

Functional near-infrared spectroscopy (fNIRS) technology has been widely used to analyze biomechanics and diagnose brain activity. Despite being a promising tool for assessing the brain cortex status, this system is susceptible to disturbances and noise from electrical instrumentation and basal metabolism. In this study, an alternative filtering method, maximum likelihood generalized extended stochastic gradient (ML-GESG) estimation, is proposed to overcome the limitations of these disturbance factors. The proposed algorithm was designed to reduce multiple disturbances originating from heartbeats, breathing, shivering, and instrumental noises as multivariate parameters. To evaluate the effectiveness of the algorithm in filtering involuntary signals, a comparative analysis was conducted with a conventional filtering method, using hemodynamic responses to auditory stimuli and psycho-acoustic factors as quality indices. Using auditory sound stimuli consisting of 12 voice sources (six males and six females), the fNIRS test was configured with 18 channels and conducted on 10 volunteers. The psycho-acoustic factors of loudness and sharpness were used to evaluate physiological responses to the stimuli. Applying the proposed filtering method, the oxygenated hemoglobin concentration correlated better with the psychoacoustic analysis of each auditory stimulus than that of the conventional filtering method.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38809741

RESUMO

This study proposes a neural-network (NN)-based adaptive fixed-time control method for a two-degree-of-freedom (2-DOF) nonlinear helicopter system with input quantization and output constraints. First, a hysteresis quantizer is employed to mitigate chattering during signal quantization, and adaptive variables are utilized to eliminate errors in the quantization process. Subsequently, the system uncertainties are approximated using a radial basis function NN. Simultaneously, a logarithmic barrier Lyapunov function (BLF) is constructed to prevent the system outputs from violating the constraint boundaries. Based on a rigorous Lyapunov stability analysis and the fixed-time stability criterion, the signals of the closed-loop system are proven to be bounded within a fixed time. Finally, numerical simulations and experiments verified the feasibility of the proposed method.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38498739

RESUMO

Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Humanos , Memória de Curto Prazo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroencefalografia , Encéfalo/fisiologia , Lobo Frontal/fisiologia
11.
Bioengineering (Basel) ; 10(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37370616

RESUMO

Activated channels of functional near-infrared spectroscopy are typically identified using the desired hemodynamic response function (dHRF) generated by a trial period. However, this approach is not possible for an unknown trial period. In this paper, an innovative method not using the dHRF is proposed, which extracts fluctuating signals during the resting state using maximal overlap discrete wavelet transform, identifies low-frequency wavelets corresponding to physiological noise, trains them using long-short term memory networks, and predicts/subtracts them during the task session. The motivation for prediction is to maintain the phase information of physiological noise at the start time of a task, which is possible because the signal is extended from the resting state to the task session. This technique decomposes the resting state data into nine wavelets and uses the fifth to ninth wavelets for learning and prediction. In the eighth wavelet, the prediction error difference between the with and without dHRF from the 15-s prediction window appeared to be the largest. Considering the difficulty in removing physiological noise when the activation period is near the physiological noise, the proposed method can be an alternative solution when the conventional method is not applicable. In passive brain-computer interfaces, estimating the brain signal starting time is necessary.

12.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10018-10027, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35439143

RESUMO

An adaptive neural network (NN) control is proposed for an unknown two-degree of freedom (2-DOF) helicopter system with unknown backlash-like hysteresis and output constraint in this study. A radial basis function NN is adopted to estimate the unknown dynamics model of the helicopter, adaptive variables are employed to eliminate the effect of unknown backlash-like hysteresis present in the system, and a barrier Lyapunov function is designed to deal with the output constraint. Through the Lyapunov stability analysis, the closed-loop system is proven to be semiglobally and uniformly bounded, and the asymptotic attitude adjustment and tracking of the desired set point and trajectory are achieved. Finally, numerical simulation and experiments on a Quanser's experimental platform verify that the control method is appropriate and effective.

13.
IEEE Trans Cybern ; 53(6): 3939-3950, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468078

RESUMO

Recently, with the development of the marine economy, marine risers have garnered increasing attention as they present facile and reliable methods for oil and gas transportation. However, these risers are susceptible to vibrations, which can lead to system performance degradation and fatigue damage. Therefore, effective vibration control strategies are required to address this issue. In this study, a novel adaptive fault-tolerant control (FTC) strategy is adopted to suppress the vibrations of a 3-D riser-vessel system against the effects of actuator failures, backlash-like hysteresis, and external disturbances. A barrier-based Lyapunov function is merged to eliminate the time-varying output constraints of the system. Adaptive FTC laws with projection mapping operators are designed to compensate for parameter uncertainties and consider input nonlinearities to improve system robustness. Finally, a rigorous Lyapunov analysis and numerical simulations are performed to verify the validity of the proposed controller and guarantee uniformly bounded stability of the system.

14.
ISA Trans ; 137: 98-110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801138

RESUMO

This paper discusses a leader-following consensus problem for nonlinear multi-agent systems (MASs) subjected to generalized Lipschitz-type nonlinearity using output feedback. An event-triggered (ET) leader-following control scheme, based upon estimated states using observers, is proposed for efficient bandwidth utilization by application of invariant sets. Distributed observers are designed to estimate the states of the followers because actual states are not always readily available. Besides, in order to reduce unnecessary data communication among the followers, an ET strategy has been formulated which excludes Zeno behavior as well. Under this proposed scheme, sufficient conditions are formulated using Lyapunov theory. These conditions not only guarantee the asymptotic stability of estimation error, but also ensure the tracking consensus of nonlinear MASs. Further, a simple and less conservative design approach using a decoupling scheme for assuring necessity and sufficiency for the main design approach has also been explored. The decoupling scheme is similar to separation principle for linear systems. Contrary to the existing works, the nonlinear systems considered in this study cover a wide family of Lipschitz nonlinearities, including both globally and locally Lipschitz systems. Moreover, the proposed approach is more efficient in handling ET consensus. Finally, the obtained results are verified with single link robots and modified Chua's circuits.

15.
Health Inf Sci Syst ; 11(1): 35, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37545487

RESUMO

Transcranial alternating current stimulation (tACS) exhibits the capability to interact with endogenous brain oscillations using an external low-intensity sinusoidal current and influences cerebral function. Despite its potential benefits, the physiological mechanisms and effectiveness of tACS are currently a subject of debate and disagreement. The aims of our study are to (i) evaluate the neurological and behavioral impact of tACS by conducting repetitive sham-controlled experiments and (ii) propose criteria to evaluate effectiveness, which can serve as a benchmark to determine optimal individual-based tACS protocols. In this study, 15 healthy adults participated in the experiment over two visiting: sham and tACS (i.e., 5 Hz, 1 mA). During each visit, we used multimodal recordings of the participants' brain, including simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), along with a working memory (WM) score to quantify neurological effects and cognitive changes immediately after each repetitive sham/tACS session. Our results indicate increased WM scores, hemodynamic response strength, and EEG power in theta and delta bands both during and after the tACS period. Additionally, the observed effects do not increase with prolonged stimulation time, as the effects plateau towards the end of the experiment. In conclusion, our proposed closed-loop scheme offers a promising advance for evaluating the effectiveness of tACS during the stimulation session. Specifically, the assessment criteria use participant-specific brain-based signals along with a behavioral output. Moreover, we propose a feedback efficacy score that can aid in determining the optimal stimulation duration based on a participant-specific brain state, thereby preventing the risk of overstimulation.

16.
Bioengineering (Basel) ; 10(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37508837

RESUMO

This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.

17.
Neuroimage ; 63(1): 553-68, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796989

RESUMO

This paper presents a state-space hemodynamic model by which any event-related hemodynamic prediction function (i.e., the basis function of the design matrix in the general linear model) is obtained as an output of the model. To model the actual event-related behavior during a task period (intra-activity dynamics) besides the contrasting behavior among the different task periods and against the rest periods (inter-activity dynamics), the modular system is investigated by parametric subspace-based state-space modeling of actual hemodynamic response to an impulse stimulus. This model provides a simple and computationally efficient way to generate the event-related basis function for an experiment by just convolving the developed hemodynamic model with the impulse approximation of the experimental stimuli. The demonstration of the stated findings is carried out by conducting finger-related experiments with slow- and fast-sampling near-infrared spectroscopy instruments to model and validate the cortical hemodynamic responses. The generated basis functions of the finger-related experiments are adapted from real data to validate the incorporation of non-delayed and real-time event-related features and to effectively demonstrate a dynamic-modeling-based online framework. The proposed method demonstrates potential in estimating event-related intra- and inter-activation dynamics and thereby outperforms the classical Gaussian approximation method.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular , Potenciais Evocados/fisiologia , Neuroimagem Funcional/métodos , Modelos Neurológicos , Consumo de Oxigênio/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Biol Cybern ; 106(10): 587-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23053429

RESUMO

In this paper, we address the control problem of bifurcations in the Morris-Lecar (ML) neuron model. With the use of a dynamic state-feedback control, two Hopf bifurcation points in the ML neuron model with Type II excitability can be relocated to new desired locations simultaneously. Also, with the proposed control law, the neuronal excitability characteristics can be transformed from Type I excitability to Type II excitability by changing the type of bifurcation, in which the neuron goes from quiescence to periodic spiking from a saddle node on an invariant circle bifurcation to a Hopf bifurcation. Simulation results are provided.


Assuntos
Modelos Biológicos , Neurônios/fisiologia , Animais
19.
Sci Rep ; 12(1): 12380, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858895

RESUMO

This research aims to contribute in developing a mathematical model for the composite probabilistic energy emissions dispatch (CPEED) with renewable energy systems, and it proposes a novel framework, based on an existing astute black widow optimization (ABWO) algorithm. Renewable energy power generation technology has contributed to pollution reduction and sustainable development. Therefore, this research aims to explore the CPEED problem in the context of renewable energy generation systems to enhance the energy and climate benefits of the power systems. Five benchmark test systems, combined with conventional thermal power plants and renewable energy sources such as wind and solar, are considered herein to obtain the optimum solution for cost and pollutant emission by using the ABWO approach. The ascendancy is not limited to environmental impacts, but it also provides the diversification of energy supply and reduction of reliance on imported fuels. As a result, the research findings contribute in lowering the cost of fuel and pollutant emissions, correlated with electricity generation systems, while increasing the renewable energy usage and penetration. Finally, the performance and efficacy of the designed scheme have been fully validated by comprehensive experimental results and statistical analyses.


Assuntos
Poluentes Ambientais , Gases de Efeito Estufa , Eletricidade , Centrais Elétricas , Energia Renovável
20.
Front Neurosci ; 16: 878750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263362

RESUMO

With the emergence of an increasing number of functional near-infrared spectroscopy (fNIRS) devices, the significant deterioration in measurement caused by motion artifacts has become an essential research topic for fNIRS applications. However, a high requirement for mathematics and programming limits the number of related researches. Therefore, here we provide the first comprehensive review for motion artifact removal in fNIRS aiming to (i) summarize the latest achievements, (ii) present the significant solutions and evaluation metrics from the perspective of application and reproduction, and (iii) predict future topics in the field. The present review synthesizes information from fifty-one journal articles (screened according to three criteria). Three hardware-based solutions and nine algorithmic solutions are summarized, and their application requirements (compatible signal types, the availability for online applications, and limitations) and extensions are discussed. Five metrics for noise suppression and two metrics for signal distortion were synthesized to evaluate the motion artifact removal methods. Moreover, we highlight three deficiencies in the existing research: (i) The balance between the use of auxiliary hardware and that of an algorithmic solution is not clarified; (ii) few studies mention the filtering delay of the solutions, and (iii) the robustness and stability of the solution under extreme application conditions are not discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA