Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2211786119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343232

RESUMO

The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.

2.
Small ; 20(37): e2311491, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38682729

RESUMO

Conductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T'-WTe2 electrodes with scanning tunneling microscope break junction (STM-BJ) technique. The quantized conductance of 1T'-WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.

3.
Small ; 20(8): e2305607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817357

RESUMO

The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.

4.
Nat Mater ; 22(8): 1007-1012, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349394

RESUMO

Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO-LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.

5.
Chemistry ; 30(51): e202402095, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38943462

RESUMO

In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.

6.
Langmuir ; 40(4): 1988-2004, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227964

RESUMO

Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.

7.
Plant Dis ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39359041

RESUMO

Catalpa bungei originates from China. Because of its well-developed root system and strong resistance to wind and soil, it is one of the top ten recommended species of ecological management (Jian et al., 2022). In September 2023, a severe leaf rot of C. bungei was observed at Lanlake farm (500 acres) in Nanyang (33°3'23" N, 112°28'50" E), China. The incidence rate of leaf rot reached 45% (n = 100). The pale-yellow spots initially appeared on the adaxial surface of leaf margins, subsequently enlarging to form irregular black rot lesions, with the yellow halos around the necrotic area of the lesion, ultimately causing the entire leaves to wither. Diseased leaves (20) were collected, cut into pieces, sterilized, and then placed on potato dextrose agar (PDA). A total of 25 purified fungal strains were isolated, and three strains (QS2-1, QS2-2, QS2-3) from distinct areas were selected for further analysis. Each strain produced abundant aerial mycelium, initially white, which later developed purple pigments. The aerial conidiophores were sparsely branched, ending with verticillate phialides. The strains generally produced many more microconidia than macroconidia on PDA media. Microconidia were clavate and measured 3.9 to 6.6 × 1.1 to 2.4 µm (n = 50). To produce macroconidia, we used YPG liquid medium (0.3% yeast extract, 1% peptone, and 2% glucose) with shaking (200 r.p.m.) for 5 days. Macroconidia were slender, straight, and measured 19.5 to 27.1 × 1.9 to 3.5 µm, with 3 to 5 septa (n = 50). The morphological characteristics matched the species description of Fusarium verticillioides (Sacc.) Nirenberg 1976 (Leslie and Summerell, 2006). The rDNA internal transcribed spacer (ITS), ß-tubulin gene (tub2), translation elongation factor 1-alpha gene (tef1), calmodulin (cmdA), RNA polymerase II largest subunit (rpb1), and RNA polymerase II second largest subunit (rpb2) were amplified for molecular identification (O'Donnell et al., 2022). The sequences were submitted to GenBank with accession numbers OR741762, OR741763, OR741765 (ITS), OR762222, OR762223, OR939807 (tub2), OR939799, OR939800, PQ035927 (tef1), OR778611, OR939808, OR939809 (cmdA), PQ035921, PQ035922, PQ035923 (rpb1), and PQ035924, PQ035925, PQ035926 (rpb2). BLASTn analysis of QS2-1 sequences exhibited 99% similarity with F. verticillioides sequences (strains CBS 576.78) MT010888 of cmdA (711/713, 99%), MT010956 of rpb1 (1790/1791, 99%), and MT010972 of rpb2 (868/870, 99%). A phylogenetic tree was constructed using concatenated sequences along with the sequences of the type strains employing the neighbor-joining method, showing the three strains formed a clade with the type strain CBS 576.78. Pathogenicity was tested on 10 healthy potted seedlings by spraying them with a conidial suspension (106 conidia ml-1), while 5 seedlings were sprayed with sterilized water as a control. The plants were placed in climate incubators. Ten days after inoculation, typical lesions were observed on the treated plants, but not on the control group. The reisolated strains were identified as F. verticillioides through morphological characterization, thus fulfilling Koch's postulates. F. verticillioides is known to cause Fusarium ear rot on maize, and other plants including Brassica rapa (Akram et al., 2020) and Schizonepeta tenuifolia (Li et al., 2024). This is the first documented instance of F. verticillioides causing leaf rot on C. bungei globally. Identifying the pathogen is critical to implementing effective disease management strategies, especially in choosing proper pesticide agents and screening disease-resistant varieties.

8.
Plant Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625692

RESUMO

Catalpa bungei originates from China. It is fast-growing and possesses a vertically aligned trunk, rendering it a commendable construction material and a significant economic species. In July 2022, a serious leaf spot occurred in the LanLake farm (surveyed area of about 700 acres) in Nanyang (33°3'23" N, 112°28'50" E), Henan Province, China. The incidence rate of leaf disease reached 54% (n=100). The disease initially manifested as irregular round spots with a yellowish-brown hue, subsequently extending in all directions. Later, the lesion periphery exhibited a darkening effect, leading to yellowing. Twenty diseased leaves were randomly collected and cut into small pieces at the interfaces between infected and healthy tissues. The tissues were sterilized in a solution of 75% ethanol and 1% NaClO for 30 seconds and 1 minute, respectively. After rinsing in sterile water, the pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C for 5 days. A total of 29 purified fungal strains were acquired, exhibiting comparable phenotypes in terms of morphological characteristics. Three strains (QS1-1, QS1-2, and QS1-3) were isolated for subsequent investigations. The colony exhibited abundant aerial mycelium with shades ranging from dark green to grey-brown on the reverse side. To analyze the morphological characteristics of conidia, potato carrot agar (PCA) was used as the culture medium and incubated at 25°C with a 12-hour light/dark cycle. Conidia were obclavate or spheroidal, dark brown, with 3 to 5 transverse septa, and 1 to 4 longitudinal septa, measuring 12.4 to 36.7 × 4.4 to 9.0 µm (n=100), with conical beak lengths ranging from 0 to 4.3 µm. These morphological traits suggested that the pathogen shares similarities with the Alternaria species. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (tef1), glyceraldehyde 3-phosphate dehydrogenase gene (gapdh), and RNA polymerase II second largest subunit (rpb2) were amplified for further molecular identification. The resultant sequences were submitted to GenBank with the following accession numbers: OR733559, OR742124, OR761873 (ITS), OR939796, OR939797, OR939798 (tef1), OR939801, OR939802, OR939803 (gapdh), and PP054846, PP054847, PP054848 (rpb2). A Phylogenetic tree was constructed of combined genes (ITS, tef1, gapdh, and rpb2) of sequences, alongside the sequences of the type strains by the neighbor-joining method. The three strains formed a clade with the strains CBS 121456 of Alternaria alternata in phylogenetic trees, being separated from other Alternaria spp. The morphological features and molecular analyses supported the strains as members of Alternaria alternata (Woudenberg et al. 2015). To validate pathogenicity, a conidial suspension (106 conidia ml-1) of all three strains was inoculated onto three healthy leaves of five seedlings, with 50 µl of inoculum absorbed with cotton balls. Another group of five plants received sterile water as a control. All plants were incubated in a climate chamber at 28°C and 90% relative humidity. Four days post-inoculation, lesions resembling natural phenomena were observed, whereas control plants showed no symptoms. Subsequent reisolation produced cultures that were morphologically and molecularly identical to the original strains, fulfilling Koch's postulates. Stem canker of C. bungei caused by Phytophthora nicotianae has been reported in China (Chang et al. 2022). This is the first report of A. alternata causing leaf spots on C. bungei in China. Further research is required on management options to control this disease and the host range still needs to be clarified for accurate disease management.

9.
Nano Lett ; 23(20): 9399-9405, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877237

RESUMO

An accurate rule for predicting conductance is the cornerstone of developing molecular circuits and provides a promising solution for miniaturizing electric circuits. The successful prediction of series molecular circuits has proven the possibility of establishing a rule for molecular circuits under quantum mechanics. However, the quantitatively accurate prediction has not been validated by experiments for parallel molecular circuits. Here we used 1,3-dihydrobenzothiophene (DBT) to build the parallel molecular circuits. The theoretical simulation and single-molecule conductance measurements demonstrated that the conductance of the molecule containing one DBT is the unprecedented linear combination of the conductance of the two individual channels with respective contribution weights of 0.37 and 0.63. With these weights, the conductance of the molecule containing two DBTs is predicted as 1.81 nS, matching perfectly with the measured conductance (1.82 nS). This feature offers a potential rule for quantitatively predicting the conductance of parallel molecular circuits.

10.
Nano Lett ; 23(13): 6027-6034, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387588

RESUMO

Electrodes play an essential role in controlling electrode-molecule coupling. However, conventional metal electrodes require linkers to anchor the molecule. Van der Waals interaction offers a versatile strategy to connect the electrode and molecule without anchor groups. Except for graphene, the potential of other materials as electrodes to fabricate van der Waals molecular junctions remains unexplored. Herein, we utilize semimetallic transition metal dichalcogenides (TMDCs) 1T'-WTe2 as electrodes to fabricate WTe2/metalated tetraphenylporphyrin (M-TPP)/WTe2 junctions via van der Waals interaction. Compared with chemically bonded Au/M-TPP/Au junctions, the conductance of these M-TPP van der Waals molecular junctions is enhanced by ∼736%. More importantly, WTe2/M-TPP/WTe2 junctions exhibit the tunable conductance from 10-3.29 to 10-4.44 G0 (1.15 orders of magnitude) via single-atom control, recording the widest tunable range of conductance for M-TPP molecular junctions. Our work demonstrates the potential of two-dimensional TMDCs for constructing highly tunable and conductive molecular devices.

11.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893316

RESUMO

For designing single-molecule devices that have both conjugation systems and structural flexibility, a hyperconjugated molecule with a σ-π bond interaction is considered an ideal candidate. In the investigation of conductance at the single-molecule level, since few hyperconjugation systems have been involved, the strategy of building hyperconjugation systems and the mechanism of electron transport within this system remain unexplored. Based on the skipped-conjugated structure, we present a rational approach to construct a hyperconjugation molecule using a hydroxyl group, which serves as a bridge to interact with the conjugated fragments. The measurement of single-molecule conductance reveals a two-fold conductance enhancement of the hyperconjugation system having the 'bridging' hydroxyl group compared to hydroxyl-free derivatives. Theoretical studies demonstrate that the hydroxyl group in the hyperconjugation system connects the LUMO of the two conjugated fragments and opens a through-space channel for electron transport to enhance the conductance.

12.
Angew Chem Int Ed Engl ; : e202416319, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284773

RESUMO

Despite extensive studies has been explored on single-molecule switches and rectifiers, the design of single-molecule inductors has not been explored due to the experimental challenges in the investigation of frequency-dependent charge transport at the single-molecule scale. In this study, we synthesized a helicene-based helical molecular wire and carried out meticulous single-molecule conductance measurements, combined with current-voltage (IV) studies with varying frequencies using the scanning tunneling microscope break junction (STM-BJ) technique. Our results reveal the formation of a single-molecule junction and highlight the unique behavior of the molecular wire in response to different alternating current (AC) varying frequencies. The transport of charges occurs selectively either through the coiled backbone of the conjugated helical structure or vertically via π-π stacking, depending on the frequency of the applied AC. Notably, our investigation demonstrates the functionality of the wire as an inductor at low frequencies, and a capacitor at high frequencies. This work lays the foundation for a systematic approach to designing, fabricating, and implementing single-molecule logic devices such as inductors and wave filters.

13.
Angew Chem Int Ed Engl ; : e202415940, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314126

RESUMO

Single-molecule diode was the first proposed device in molecular electronics. Despite the great efforts and advances over 50 years, the reported rectification ratios, the most critical parameter of a diode, remain moderate for the single-molecule diode. Herein, we report an approach to achieve a larger rectification ratio by adopting the combined strategies of p-type boron doping, the single-layer graphene nodes, and the van der Waals layer-by-layer architecture. Measured current-voltage curves showed one of the as-fabricated single-molecule diodes hit an unprecedented large rectification ratio of 457 at ±1 V. Break junction operations and spectroscopic measurements revealed the three-atom-thick configuration of the single-molecule diodes. With the experimental and theoretical calculation results, we demonstrated the doped boron atoms induced holes to redistribute the electron density, making the asymmetric coupling at positive and negative biases, and the van der Waals interaction promoted asymmetric coupling and significantly boosted diode performance.

14.
J Am Chem Soc ; 145(18): 10404-10410, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121913

RESUMO

Conjugated molecules play a critical role in the construction of single-molecule devices. However, most conventional conjugated molecules, such as hydrocarbons, involve only a pπ-pπ conjugation of light elements. While the metal d-orbitals can introduce abundant electronic effects to achieve novel electronic properties, it is very scarce for the charge transport study of dπ-pπ conjugated pathways with a metal involved. Here, we employed the single-molecule break junction technique to investigate the charge transport through dπ-pπ conjugated backbones with metal-carbon multiple bonds integrated into the alternative conjugated pathways. The involved dπ-pπ conjugation not only supports high conductivity comparable to that of conjugated hydrocarbons but also significantly enhances the tunable diversity in electronic properties through the metal-induced secondary interaction. Specifically, the introduction of the metal brings an unconventionally stereoelectronic effect triggered by metal-carbon dπ-pπ hyperconjugation, which can be tuned by protonation taking place on the metal-carbon multiple bonds, collectively modulating the single-molecule rectification feature and transmission mechanism. This work demonstrates the promise of utilizing the diverse electronic effect of metals to design molecular devices.

15.
J Am Chem Soc ; 145(31): 17232-17241, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493612

RESUMO

Supramolecular radical chemistry is an emerging area bridging supramolecular chemistry and radical chemistry, and the integration of radicals into the supramolecular architecture offers a new dimension for tuning their structures and functions. Although various efforts have been devoted to the fabrication of supramolecular junctions, the charge transport characterization through the supramolecular radicals remained unexplored due to the challenges in creating supramolecular radicals at the single-molecule level. Here, we demonstrate the fabrication and charge transport investigation of a supramolecular radical junction using the electrochemical scanning tunneling microscope-based break junction (EC-STM-BJ) technique. We found that the conductance of a supramolecular radical junction was more than 1 order of magnitude higher than that of a supramolecular junction without a radical and even higher than that of a fully conjugated oligophenylenediamine molecule with a similar length. The combined experimental and theoretical investigations revealed that the radical increased the binding energy and decreased the energy gap in the supramolecular radical junction, which leads to the near-resonant transport through the supramolecular radical. Our work demonstrated that the supramolecular radical can provide not only strong binding but also efficient electrical coupling between building blocks, which provides new insights into supramolecular radical chemistry and new materials with supramolecular radicals.

16.
J Am Chem Soc ; 145(39): 21679-21686, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747934

RESUMO

The charge transport through supramolecular junctions exhibits unique quantum interference (QI) effects, which provide an opportunity for the design of supramolecular transistors. Benefiting from the configuration dependence of QI, configuration control of the supramolecular assemblies to demonstrate the QI features is a key but challenging step. In this work, we fabricated the supramolecular transistors and investigated the charge transport through the conducting channel of the individual π-stacked thiophene/phenylene co-oligomers (TPCOs) using the electrochemically gated scanning tunneling microscope break junction technique. We controlled the configuration of the supramolecular channel and switched the QI features between the anti-resonance and resonance states of the supramolecular channels. We observed the supramolecular transistor with its on/off ratio above 103 (∼1300), a high gating efficiency of ∼165 mV/dec, a low off-state leakage current of ∼30 pA, and the channel length scaled down to <2.0 nm. Density functional theory calculations suggested that the QI features in π-stacked TPCOs vary depending on the supramolecular architecture and can be manipulated efficiently by fine-tuning the supramolecular configurations. This work reveals the potential of the supramolecular channels for molecular electronics and provides a fundamental understanding of intermolecular charge transport.

17.
Anal Chem ; 95(26): 9831-9838, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347983

RESUMO

Detection of organophosphorus pesticides (OPs) with high sensitivity in environmental samples is of vital importance for environmental safety and human health. However, it remains a challenge to achieve fM (10-15 mol/L) sensitivity for detecting OPs. Herein, we developed an acetylcholinesterase sensor based on 3,3',5,5'-tetramethylbenzidine (TMB) combining an enzyme-mediated strategy and scanning tunneling microscopy break junction (STM-BJ). Benefiting from the enzyme inhibition kinetics of OPs and the customized spectral clustering analysis method, our new strategy achieved the detection of methamidophos (MTMP) with a limit of 10 aM (10-17 mol/L) and 3 times higher selectivity in mixed OPs. As applied to natural lake waters, it also exhibited high reproducibility, high stability, and good recovery. This work paves a new avenue toward the application of single-molecule conductance characterizations for biochemical analysis and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Praguicidas/análise , Compostos Organofosforados/análise , Acetilcolinesterase/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
18.
Nat Mater ; 21(8): 917-923, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835820

RESUMO

In-memory computing provides an opportunity to meet the growing demands of large data-driven applications such as machine learning, by colocating logic operations and data storage. Despite being regarded as the ultimate solution for high-density integration and low-power manipulation, the use of spin or electric dipole at the single-molecule level to realize in-memory logic functions has yet to be realized at room temperature, due to their random orientation. Here, we demonstrate logic-in-memory operations, based on single electric dipole flipping in a two-terminal single-metallofullerene (Sc2C2@Cs(hept)-C88) device at room temperature. By applying a low voltage of ±0.8 V to the single-metallofullerene junction, we found that the digital information recorded among the different dipole states could be reversibly encoded in situ and stored. As a consequence, 14 types of Boolean logic operation were shown from a single-metallofullerene device. Density functional theory calculations reveal that the non-volatile memory behaviour comes from dipole reorientation of the [Sc2C2] group in the fullerene cage. This proof-of-concept represents a major step towards room-temperature electrically manipulated, low-power, two-terminal in-memory logic devices and a direction for in-memory computing using nanoelectronic devices.

19.
Angew Chem Int Ed Engl ; 62(13): e202216819, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36585932

RESUMO

The convergence of supramolecular chemistry and single-molecule electronics offers a new perspective on supramolecular electronics, and provides a new avenue toward understanding and application of intermolecular charge transport at the molecular level. In this review, we will provide an overview of the advances in the characterization technique for the investigation of intermolecular charge transport, and summarize the experimental investigation of several non-covalent interactions, including π-π stacking interactions, hydrogen bonding, host-guest interactions and σ-σ interactions at the single-molecule level. We will also provide a perspective on supramolecular electronics and discuss the potential applications and future challenges.

20.
Angew Chem Int Ed Engl ; 62(50): e202311778, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933712

RESUMO

In contrast to edge-on and face-on orientations, end-on uniaxial conjugated polymers have the theoretical possibility of providing a macroscopic crystalline film. However, their fabrication is insurmountable due to sluggishly thermodynamic equilibrium states. Herein, we report the programmatic pathway to fabricate nanoarchitectonics on end-on uniaxial conjugated metallopolymers by surface-initiated simultaneous electrosynthesis and assembly. Self-assembled monolayer (SAM) with bottom-up oriented electroactive molecules as a temple allows orientation, stacking, and reactive addition of monomers triggered by switching alternative redox reactions as well as crystallization of small molecules. Repeating the same reaction can repair the unreactive site on the SAM and dynamically and statistically ensure maximum iterative coverage with ideal linear coefficients between optical or electrical responses and iterative times. The resulting nanoarchitectonics on uniaxially assembled end-on polymers over centimeter-sized areas have a subnanometer-uniform morphology and exhibit ultrahigh modulus as well as an inorganic indium tin oxides and the highest conductance among conjugated molecular monolayers. Their memristive devices provide quantitative electrical and optical responses as a function of molecular length, bias, and iterative junctions. Precise processing of nanoarchitectonics as an electrically assisted assembly or printing technique can present sophisticated optoelectric functions and dimensional batch-to-batch consistency for micro-sized organic materials and electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA