Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 178: 107630, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182053

RESUMO

We examine the phylogeny of sea pens using sequences of whole mitochondrial genomes and the nuclear ribosomal cluster generated through low coverage Illumina sequencing. Taxon sampling includes 30 species in 19 genera representing 13 families. Ancestral state reconstruction shows that most sea pen mitochondrial genomes have the ancestral gene order, and that Pennatulacea with diverse gene orders are found in a single clade. The monophyly of Pennatulidae and Protoptilidae are rejected by both the mitochondrial and nuclear dataset, while the mitochondrial dataset further rejects monophyly of Virgulariidae, and the nuclear dataset rejects monophyly of Kophobelemnidae. We show discordance between nuclear ribosomal gene cluster phylogenies and whole mitochondrial genome phylogenies and highlight key Pennatulacea taxa that could be included in cnidarian genome-wide studies to better resolve the sea pen tree of life. We further illustrate how well frequently sequenced markers capture the overall diversity of the mitochondrial genome and the nuclear ribosomal genes in sea pens.


Assuntos
Antozoários , Genoma Mitocondrial , Humanos , Animais , Filogenia , Evolução Molecular , Antozoários/genética , Ordem dos Genes
2.
Carcinogenesis ; 42(2): 220-231, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32780107

RESUMO

Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias da Próstata/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Próstata/patologia , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , DNA Metiltransferase 3B
3.
Mol Ecol ; 30(22): 5831-5843, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494339

RESUMO

Social environments influence multiple traits of individuals including immunity, stress and ageing, often in sex-specific ways. The composition of the microbiome (the assemblage of symbiotic microorganisms within a host) is determined by environmental factors and the host's immune, endocrine and neural systems. The social environment could alter host microbiomes extrinsically by affecting transmission between individuals, probably promoting homogeneity in the microbiome of social partners. Alternatively, intrinsic effects arising from interactions between the microbiome and host physiology (the microbiota-gut-brain axis) could translate social stress into dysbiotic microbiomes, with consequences for host health. We investigated how manipulating social environments during larval and adult life-stages altered the microbiome composition of Drosophila melanogaster fruit flies. We used social contexts that particularly alter the development and lifespan of males, predicting that any intrinsic social effects on the microbiome would therefore be sex-specific. The presence of adult males during the larval stage significantly altered the microbiome of pupae of both sexes. In adults, same-sex grouping increased bacterial diversity in both sexes. Importantly, the microbiome community structure of males was more sensitive to social contact at older ages, an effect partially mitigated by housing focal males with young rather than coaged groups. Functional analyses suggest that these microbiome changes impact ageing and immune responses. This is consistent with the hypothesis that the substantial effects of the social environment on individual health are mediated through intrinsic effects on the microbiome, and provides a model for understanding the mechanistic basis of the microbiota-gut-brain axis.


Assuntos
Drosophila melanogaster , Microbiota , Fatores Etários , Animais , Eixo Encéfalo-Intestino , Drosophila melanogaster/genética , Feminino , Masculino , Microbiota/genética , Meio Social
4.
Mol Ecol ; 30(5): 1322-1335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411382

RESUMO

Microbiome-pathogen interactions are increasingly recognized as an important element of host immunity. While these host-level interactions will have consequences for community disease dynamics, the factors which influence host microbiomes at larger scales are poorly understood. We here describe landscape-scale pathogen-microbiome associations within the context of post-epizootic amphibian chytridiomycosis, a disease caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. We undertook a survey of Neotropical amphibians across altitudinal gradients in Ecuador ~30 years following the observed amphibian declines and collected skin swab-samples which were metabarcoded using both fungal (ITS-2) and bacterial (r16S) amplicons. The data revealed marked variation in patterns of both B. dendrobatidis infection and microbiome structure that are associated with host life history. Stream breeding amphibians were most likely to be infected with B. dendrobatidis. This increased probability of infection was further associated with increased abundance and diversity of non-Batrachochytrium chytrid fungi in the skin and environmental microbiome. We also show that increased alpha diversity and the relative abundance of fungi are lower in the skin microbiome of adult stream amphibians compared to adult pond-breeding amphibians, an association not seen for bacteria. Finally, stream tadpoles exhibit lower proportions of predicted protective microbial taxa than pond tadpoles, suggesting reduced biotic resistance. Our analyses show that host breeding ecology strongly shapes pathogen-microbiome associations at a landscape scale, a trait that may influence resilience in the face of emerging infectious diseases.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Anfíbios , Animais , Quitridiomicetos/genética , Equador , Microbiota/genética , Micoses/veterinária
5.
Carcinogenesis ; 40(1): 164-172, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295739

RESUMO

RAD9A plays an important role in prostate tumorigenesis and metastasis-related phenotypes. The protein classically functions as part of the RAD9A-HUS1-RAD1 complex but can also act independently. RAD9A can selectively transactivate multiple genes, including CDKN1A and NEIL1 by binding p53-consensus sequences in or near promoters. RAD9A is overexpressed in human prostate cancer specimens and cell lines; its expression correlates with tumor progression. Silencing RAD9A in prostate cancer cells impairs their ability to form tumors in vivo and migrate as well as grow anchorage independently in vitro. We demonstrate herein that RAD9A transcriptionally controls AGR2, a gene aberrantly overexpressed in patients with metastatic prostate cancer. Transient or stable knockdown of RAD9A in PC-3 cells caused downregulation of AGR2 protein abundance. Reduced AGR2 protein levels were due to lower abundance of AGR2 mRNA. The AGR2 genomic region upstream of the coding initiation site contains several p53 consensus sequences. RAD9A bound specifically to the 5'-untranslated region of AGR2 in PC-3 cells at a partial p53 consensus sequence at position +3136 downstream from the transcription start site, determined by chromatin immunoprecipitation, followed by PCR amplification. Binding of RAD9A to the p53 consensus sequence was sufficient to drive AGR2 gene transcription, shown by a luciferase reporter assay. In contrast, when the RAD9A-binding sequence on the AGR2 was mutated, no luciferase activity was detected. Knockdown of RAD9A in PC-3 cells impaired cell migration and anchorage-independent growth. However, ectopically expressed AGR2 in RAD9A-depleted PC-3 cells restored these phenotypes. Our results suggest RAD9A drives metastasis by controlling AGR2 abundance.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Neoplasias da Próstata/patologia , Proteínas/genética , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Mucoproteínas , Metástase Neoplásica , Proteínas Oncogênicas , Fenótipo , RNA Mensageiro/análise , Transcrição Gênica
6.
Nucleic Acids Res ; 43(9): 4531-46, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25873625

RESUMO

RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9(-/-) relative to Rad9(+/+) embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9(-/-) mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Glicosilases/biossíntese , DNA Glicosilases/genética , Células-Tronco Embrionárias/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo
7.
Ergonomics ; 60(5): 692-700, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27267493

RESUMO

In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.


Assuntos
Estimulação Acústica , Sinais (Psicologia) , Vibração , Adolescente , Adulto , Atenção , Discriminação Psicológica , Feminino , Humanos , Masculino , Tempo de Reação , Análise e Desempenho de Tarefas , Percepção Visual , Adulto Jovem
8.
J Cell Sci ; 126(Pt 17): 3927-38, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23788429

RESUMO

In mitotic cells, RAD9A functions in repairing DNA double-strand breaks (DSBs) by homologous recombination and facilitates the process by cell cycle checkpoint control in response to DNA damage. DSBs occur naturally in the germline during meiosis but whether RAD9A participates in repairing such breaks is not known. In this study, we determined that RAD9A is indeed expressed in the male germ line with a peak of expression in late pachytene and diplotene stages, and the protein was found associated with the XY body. As complete loss of RAD9A is embryonic lethal, we constructed and characterized a mouse strain with Stra8-Cre driven germ cell-specific ablation of Rad9a beginning in undifferentiated spermatogonia in order to assess its role in spermatogenesis. Adult mutant male mice were infertile or sub-fertile due to massive loss of spermatogenic cells. The onset of this loss occurs during meiotic prophase, and there was an increase in the numbers of apoptotic spermatocytes as determined by TUNEL. Spermatocytes lacking RAD9A usually arrested in meiotic prophase, specifically in pachytene. The incidence of unrepaired DNA breaks increased, as detected by accumulation of γH2AX and DMC1 foci on the axes of autosomal chromosomes in pachytene spermatocytes. The DNA topoisomerase IIß-binding protein 1 (TOPBP1) was still localized to the sex body, albeit with lower intensity, suggesting that RAD9A may be dispensable for sex body formation. We therefore show for the first time that RAD9A is essential for male fertility and for repair of DNA DSBs during meiotic prophase I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Fertilidade/genética , Prófase Meiótica I/fisiologia , Reparo de DNA por Recombinação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/biossíntese , Histonas/biossíntese , Histonas/metabolismo , Masculino , Prófase Meiótica I/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato , Deleção de Sequência/genética , Espermatócitos/citologia , Espermatogênese/genética , Testículo
9.
Sci Rep ; 14(1): 5162, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431688

RESUMO

Ophidiomycosis is an emerging infectious disease affecting wild snakes in the Northern Hemisphere. Recently confirmed in Great Britain, the prevalence, severity and significance of ophidiomycosis has yet to be characterised in free-living snakes at a population level in Europe. Therefore, a population of barred grass snakes (Natrix helvetica) in eastern England was monitored for three seasons (May 2019 to October 2021), to investigate the prevalence (25.5%; 191/750 snakes) and severity of skin lesions and their aetiology. The most frequently observed skin lesion characteristics were changes in scale colour, crusting, and scale margin erosion. The majority of such lesions (96.9%; 185/191 snakes) was observed on the ventral surface along the length of the body. The severity of skin lesions was considered mild in more than half of the cases (53.1%; 98/191 snakes). Predominantly, skin lesions were observed in adult snakes (72.8%; 139/191 snakes). Combined histological examinations and qPCR tests of skin lesions from N. helvetica sloughs and/or carcasses confirmed a diagnosis of ophidiomycosis. Further targeted surveillance, supported by molecular and histological examinations to confirm skin lesion aetiology, is required to determine the extent to which our findings reflect the occurrence of ophidiomycosis in populations within wider landscapes.


Assuntos
Colubridae , Dermatopatias , Animais , Humanos , Prevalência , Serpentes , Europa (Continente) , Reino Unido
10.
Front Microbiol ; 14: 1111018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891392

RESUMO

In response to the current worldwide amphibian extinction crisis, conservation instances have encouraged the establishment of ex-situ collections for endangered species. The resulting assurance populations are managed under strict biosecure protocols, often involving artificial cycles of temperature and humidity to induce active and overwintering phases, which likely affect the bacterial symbionts living on the amphibian skin. However, the skin microbiota is an important first line of defense against pathogens that can cause amphibian declines, such as the chytrid Batrachochytrium dendrobatidis (Bd). Determining whether current husbandry practices for assurance populations might deplete amphibians from their symbionts is therefore essential to conservation success. Here, we characterize the effect of the transitions from the wild to captivity, and between aquatic and overwintering phases, on the skin microbiota of two newt species. While our results confirm differential selectivity of skin microbiota between species, they underscore that captivity and phase-shifts similarly affect their community structure. More specifically, the translocation ex-situ is associated with rapid impoverishment, decrease in alpha diversity and strong species turnover of bacterial communities. Shifts between active and overwintering phases also cause changes in the diversity and composition of the microbiota, and on the prevalence of Bd-inhibitory phylotypes. Altogether, our results suggest that current husbandry practices strongly restructure the amphibian skin microbiota. Although it remains to be determined whether these changes are reversible or have deleterious effects on their hosts, we discuss methods to limit microbial diversity loss ex-situ and emphasize the importance of integrating bacterial communities to applied amphibian conservation.

11.
PeerJ ; 11: e16682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130921

RESUMO

Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.


Assuntos
Microbioma Gastrointestinal , Gansos , Animais , Bactérias , Dieta/veterinária , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Gansos/microbiologia , Tamanho Corporal
12.
Microbiome ; 10(1): 44, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272699

RESUMO

BACKGROUND: The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS: Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS: Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS: Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Animais , Anuros/genética , Anuros/microbiologia , Quitridiomicetos/genética , Microbiota/genética , Micoses/microbiologia , Micoses/veterinária , RNA Ribossômico 16S/genética
13.
Dev Dyn ; 239(11): 2837-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20842695

RESUMO

RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b(-/-) embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b(+/-) embryos exhibit abnormal neural tube closure. Mrad9b(-/-) mouse embryonic fibroblasts are not viable. Mrad9b(-/-) ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b(+/+) controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b(-/-) cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Animais , Northern Blotting , Southern Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Citometria de Fluxo , Fase G2/genética , Fase G2/fisiologia , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose/genética , Mitose/fisiologia , Reação em Cadeia da Polimerase , Troca de Cromátide Irmã
14.
Mayo Clin Proc ; 96(2): 429-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33549262

RESUMO

The COVID-19 pandemic accelerated adoption of telemedicine visits into American medicine. It is commonly believed that, within a matter of weeks, telemedicine was widely and successfully implemented and that medicine is forever changed. The experience on the ground, however, is more nuanced, with both positive and negative experiences for patients and clinicians. Advanced models of team-based care with in-room support (aTBC) have developed over the past decade, with strategic delegation of tasks to uptrained support staff, allowing physicians to provide undivided attention to their patients and greater access to care for their populations. Herein, we describe our initial experiences with telemedicine in the context of many years practicing in aTBC models. Our experience demonstrates that when implementing telemedicine visits, it is important to avoid a reflex reversion to the outmoded model of the physician alone in the room with the patient and instead bring forth the safety, quality, and satisfaction advantages associated with aTBC. We provide a practical "how-to" guide for implementing telemedicine visits; outline logistical details of representative video and audio visits from our own practices; describe new opportunities for family engagement, care coordination, and comanagement across specialties; and outline a research agenda going forward to further knowledge of the risks and benefits and optimal application of health care on a telemedicine platform.


Assuntos
COVID-19 , Equipe de Assistência ao Paciente , Telemedicina , Humanos
15.
Mol Cancer ; 9: 67, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20334655

RESUMO

BACKGROUND: Cells are constantly exposed to stresses from cellular metabolites as well as environmental genotoxins. DNA damage caused by these genotoxins can be efficiently fixed by DNA repair in cooperation with cell cycle checkpoints. Unrepaired DNA lesions can lead to cell death, gene mutation and cancer. The Rad1 protein, evolutionarily conserved from yeast to humans, exists in cells as monomer as well as a component in the 9-1-1 protein complex. Rad1 plays crucial roles in DNA repair and cell cycle checkpoint control, but its contribution to carcinogenesis is unknown. RESULTS: To address this question, we constructed mice with a deletion of Mrad1. Matings between heterozygous Mrad1 mutant mice produced Mrad1+/+ and Mrad1+/- but no Mrad1-/- progeny, suggesting the Mrad1 null is embryonic lethal. Mrad1+/- mice demonstrated no overt abnormalities up to one and half years of age. DMBA-TPA combinational treatment was used to induce tumors on mouse skin. Tumors were larger, more numerous, and appeared earlier on the skin of Mrad1+/- mice compared to Mrad1+/+ animals. Keratinocytes isolated from Mrad1+/- mice had significantly more spontaneous DNA double strand breaks, proliferated slower and had slightly enhanced spontaneous apoptosis than Mrad1+/+ control cells. CONCLUSION: These data suggest that Mrad1 is important for preventing tumor development, probably through maintaining genomic integrity. The effects of heterozygous deletion of Mrad1 on proliferation and apoptosis of keratinocytes is different from those resulted from Mrad9 heterozygous deletion (from our previous study), suggesting that Mrad1 also functions independent of Mrad9 besides its role in the Mrad9-Mrad1-Mhus1 complex in mouse cells.


Assuntos
Exonucleases/deficiência , Genes cdc , Predisposição Genética para Doença , Neoplasias Cutâneas/genética , Animais , Quebras de DNA de Cadeia Dupla , Exonucleases/genética , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout
16.
Mol Cell Biol ; 26(5): 1850-64, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16479004

RESUMO

The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Reparo do DNA/genética , Recombinação Genética , Telômero/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Quinase do Ponto de Checagem 2 , Aberrações Cromossômicas , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G2/genética , Fase G2/efeitos da radiação , Histonas/genética , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Mamíferos , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Fase S/genética , Fase S/efeitos da radiação , Proteínas de Schizosaccharomyces pombe , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Telômero/efeitos da radiação , Proteína 2 de Ligação a Repetições Teloméricas , Proteínas Supressoras de Tumor/metabolismo
17.
Zoology (Jena) ; 112(3): 217-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19230632

RESUMO

The evolution of ecomorphs within a species may represent either unique evolutionary events or multiple convergent events in similar environments. Functional studies of differing morphological traits of ecomorphs have been important to elucidate their role in adaptive radiations. The Cape dwarf chameleon, Bradypodion pumilum, has two ecomorphs: a large, brightly colored, ornate form found in closed habitats, and a small, dull form with reduced ornamentation found in open vegetation. The typical form is known to use casque size to communicate fighting ability, but it is unknown whether this is an honest signal and whether casque size is related to bite force. We show through a population genetic analysis that these ecomorphs are not separate genetic lineages but the result of multiple transitions between closed and open habitats. From measurements of ornamental and non-ornamental morphological characters and bite force in 105 chameleons, we find that bite force is significantly related to head size and is best predicted by head width. Bite force was reasonably predicted by casque height in ecomorphs from closed habitats, but not in those from open habitats. For size-adjusted data, open habitat males had wider heads, biting harder than closed habitat males. Our data suggest honesty in signaling for closed habitat ecomorphs, but for open habitat ecomorphs communication is different, a finding commensurate with the common framework for species radiations.


Assuntos
Agressão/fisiologia , Mordeduras e Picadas , Lagartos/anatomia & histologia , Lagartos/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Comportamento Animal , Tamanho Corporal , Feminino , Lagartos/classificação , Masculino
18.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(6): 764-777, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31317811

RESUMO

We present the first documented complete mitogenomes of deep-sea Pennatulacea, representing nine genera and eight families. These include one species each of the deep-sea genera Funiculina, Halipteris, Protoptilum and Distichoptilum, four species each of Umbellula and Pennatula, three species of Kophobelemnon and two species of Anthoptilum, as well as one species of the epi- and mesobenthic genus Virgularia. Seventeen circular genomes ranged from 18,513 bp (Halipteris cf. finmarchica) to 19,171 bp (Distichoptilum gracile) and contained all genes standard to octocoral mitochondrial genomes (14 protein-coding genes, two ribosomal RNA genes and one transfer RNA). We found at least three different gene orders in Pennatulacea: the ancestral gene order, the gene order found in bamboo corals (Family Isididae), and a novel gene order. The mitogenome of one species of Umbellula has a bipartite genome (∼13 kbp and ∼5 kbp), with good evidence that both parts are circular.


Assuntos
Antozoários/genética , Código de Barras de DNA Taxonômico , Genoma Mitocondrial/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Animais , Irlanda , Especificidade da Espécie
19.
Front Microbiol ; 10: 1245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281291

RESUMO

There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.

20.
Front Microbiol ; 10: 2883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956320

RESUMO

Variation among animals in their host-associated microbial communities is increasingly recognized as a key determinant of important life history traits including growth, metabolism, and resistance to disease. Quantitative estimates of the factors shaping the stability of host microbiomes over time at the individual level in non-model organisms are scarce. Addressing this gap in our knowledge is important, as variation among individuals in microbiome stability may represent temporal gain or loss of key microbial species and functions linked to host health and/or fitness. Here we use controlled experiments to investigate how both heterogeneity in microbial species richness of the environment and exposure to the emerging pathogen Ranavirus influence the structure and temporal dynamics of the skin microbiome in a vertebrate host, the European common frog (Rana temporaria). Our evidence suggests that altering the bacterial species richness of the environment drives divergent temporal microbiome dynamics of the amphibian skin. Exposure to ranavirus effects changes in skin microbiome structure irrespective of total microbial diversity, but individuals with higher pre-exposure skin microbiome diversity appeared to exhibit higher survival. Higher diversity skin microbiomes also appear less stable over time compared to lower diversity microbiomes, but stability of the 100 most abundant ("core") community members was similar irrespective of microbiome richness. Our study highlights the importance of extrinsic factors in determining the stability of host microbiomes over time, which may in turn have important consequences for the stability of host-microbe interactions and microbiome-fitness correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA