Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G570-G581, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873577

RESUMO

Growth and specification of the mouse intestine occurs in utero and concludes after birth. Although numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1-expressing cells are present at birth and behave as stem cells to establish clonal crypts within 3 wk of life. In addition, we use an inducible knockout mouse to eliminate Lrig1 and show Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates morphological changes during crypt development and the importance of Lrig1 in the developing colon.NEW & NOTEWORTHY Our studies define the importance of studying Lrig1 in colon development. We address a critical gap in the intestinal development literature and provide new information about the molecular cues that guide colon development. Using a novel, inducible knockout of Lrig1, we show Lrig1 is required for appropriate colon epithelial growth and illustrate the importance of Lrig1-expressing cells in the establishment of colonic crypts.


Assuntos
Neoplasias do Colo , Proteínas do Tecido Nervoso , Camundongos , Animais , Proteínas do Tecido Nervoso/metabolismo , Colo/metabolismo , Intestino Delgado/metabolismo , Neoplasias do Colo/metabolismo , Camundongos Knockout , Proliferação de Células , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205411

RESUMO

Growth and specification of the mouse intestine occurs in utero and concludes after birth. While numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, areas of proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1 expressing cells are present at birth and behave as stem cells to establish clonal crypts within three weeks after birth. In addition, we use an inducible knockout mouse to eliminate Lrig1 during colon development and show loss of Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates the morphological changes that occur during crypt development and the importance of Lrig1 in the developing colon.

3.
Genetics ; 212(4): 1301-1319, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175226

RESUMO

Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.


Assuntos
Encéfalo/metabolismo , Desenvolvimento Embrionário , Fatores de Crescimento de Fibroblastos/genética , Mesoderma/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Genetics ; 211(1): 219-233, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446521

RESUMO

In laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as males or females. Many sex determination and gonad differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovary and Müllerian duct development, where it antagonizes the male-promoting FGF9 signal. Wnt4 is well conserved across all vertebrates, but it is not known if Wnt4 plays a role in sex determination and/or the differentiation of sex organs in nonmammalian vertebrates. This question is especially interesting in teleosts, such as zebrafish, because they lack an Fgf9 ortholog. Here we show that wnt4a is the ortholog of mammalian Wnt4, and that wnt4b was present in the last common ancestor of humans and zebrafish, but was lost in mammals. We show that wnt4a loss-of-function mutants develop predominantly as males and conclude that wnt4a activity promotes female sex determination and/or differentiation in zebrafish. Additionally, both male and female wnt4a mutants are sterile due to defects in reproductive duct development. Together these results strongly argue that Wnt4a is a conserved regulator of female sex determination and reproductive duct development in mammalian and nonmammalian vertebrates.


Assuntos
Ductos Paramesonéfricos/metabolismo , Diferenciação Sexual , Proteína Wnt4/genética , Proteínas de Peixe-Zebra/genética , Animais , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Masculino , Ductos Paramesonéfricos/embriologia , Proteína Wnt4/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA