Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Microb Cell Fact ; 22(1): 261, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110983

RESUMO

BACKGROUND: Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line. Bioprocess optimization and monitoring will greatly benefit from advanced spectroscopy-based sensors that enable real-time monitoring and control. Here, Fourier transform (FT) Raman spectroscopy measurement via flow cell in a recirculatory loop, in combination with predictive data modeling, was assessed as a fast, low-cost, and highly sensitive process analytical technology (PAT) system for online monitoring of critical process parameters. To show the general applicability of the method, submerged fermentation was monitored using two different oleaginous and carotenogenic microorganisms grown on two different carbon substrates: glucose fermentation by yeast Rhodotorula toruloides and glycerol fermentation by marine thraustochytrid Schizochytrium sp. Additionally, the online FT-Raman spectroscopy approach was compared with two at-line spectroscopic methods, namely FT-Raman and FT-infrared spectroscopies in high throughput screening (HTS) setups. RESULTS: The system can provide real-time concentration data on carbon substrate (glucose and glycerol) utilization, and production of biomass, carotenoid pigments, and lipids (triglycerides and free fatty acids). Robust multivariate regression models were developed and showed high level of correlation between the online FT-Raman spectral data and reference measurements, with coefficients of determination (R2) in the 0.94-0.99 and 0.89-0.99 range for all concentration parameters of Rhodotorula and Schizochytrium fermentation, respectively. The online FT-Raman spectroscopy approach was superior to the at-line methods since the obtained information was more comprehensive, timely and provided more precise concentration profiles. CONCLUSIONS: The FT-Raman spectroscopy system with a flow measurement cell in a recirculatory loop, in combination with prediction models, can simultaneously provide real-time concentration data on carbon substrate utilization, and production of biomass, carotenoid pigments, and lipids. This data enables monitoring of dynamic behaviour of oleaginous and carotenogenic microorganisms, and thus can provide critical process parameters for process optimization and control. Overall, this study demonstrated the feasibility of using FT-Raman spectroscopy for online monitoring of fermentation processes.


Assuntos
Carbono , Análise Espectral Raman , Fermentação , Análise Espectral Raman/métodos , Biomassa , Carbono/metabolismo , Glicerol , Triglicerídeos , Glucose/metabolismo , Carotenoides/metabolismo
2.
Appl Microbiol Biotechnol ; 102(11): 4915-4925, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29644428

RESUMO

Recent developments in molecular biology and metabolic engineering have resulted in a large increase in the number of strains that need to be tested, positioning high-throughput screening of microorganisms as an important step in bioprocess development. Scalability is crucial for performing reliable screening of microorganisms. Most of the scalability studies from microplate screening systems to controlled stirred-tank bioreactors have been performed so far with unicellular microorganisms. We have compared cultivation of industrially relevant oleaginous filamentous fungi and microalga in a Duetz-microtiter plate system to benchtop and pre-pilot bioreactors. Maximal glucose consumption rate, biomass concentration, lipid content of the biomass, biomass, and lipid yield values showed good scalability for Mucor circinelloides (less than 20% differences) and Mortierella alpina (less than 30% differences) filamentous fungi. Maximal glucose consumption and biomass production rates were identical for Crypthecodinium cohnii in microtiter plate and benchtop bioreactor. Most likely due to shear stress sensitivity of this microalga in stirred bioreactor, biomass concentration and lipid content of biomass were significantly higher in the microtiter plate system than in the benchtop bioreactor. Still, fermentation results obtained in the Duetz-microtiter plate system for Crypthecodinium cohnii are encouraging compared to what has been reported in literature. Good reproducibility (coefficient of variation less than 15% for biomass growth, glucose consumption, lipid content, and pH) were achieved in the Duetz-microtiter plate system for Mucor circinelloides and Crypthecodinium cohnii. Mortierella alpina cultivation reproducibility might be improved with inoculation optimization. In conclusion, we have presented suitability of the Duetz-microtiter plate system for the reproducible, scalable, and cost-efficient high-throughput screening of oleaginous microorganisms.


Assuntos
Reatores Biológicos , Ensaios de Triagem em Larga Escala/instrumentação , Microbiota/fisiologia , Biomassa , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Fermentação , Ensaios de Triagem em Larga Escala/normas , Mortierella/genética , Mortierella/crescimento & desenvolvimento , Mucor/crescimento & desenvolvimento , Mucor/metabolismo , Reprodutibilidade dos Testes
3.
Biotechnol Bioeng ; 114(3): 552-559, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27596285

RESUMO

Enzymatic catalysis plays a key role in the conversion of lignocellulosic biomass to fuels and chemicals such as lactic acid. In the last decade, the efficiency of commercial cellulase cocktails has increased significantly, in part due to the inclusion of lytic polysaccharide monooxygenases (LPMOs). However, the LPMOs' need for molecular oxygen to break down cellulose demands reinvestigations of process conditions. In this study, we evaluate the efficiency of lactic acid production from steam-exploded birch using an LPMO-containing cellulase cocktail in combination with lactic acid bacteria, investigating both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). While the SSF set up generally has been considered to be more efficient because it avoids sugar accumulation which may inhibit the cellulases, the SHF set up in our study yielded 26-32% more lactic acid than the SSF. This was mainly due to competition for oxygen between LPMOs and the fermenting organisms in the SSF process, which resulted in reduced LPMO activity and thus less efficient saccharification of the lignocellulosic substrate. By means of aeration it was possible to activate the LPMOs in the SSF, but less lactic acid was produced due to a shift in metabolic pathways toward production of acetic acid. Overall, this study shows that lactic acid can be produced efficiently from lignocellulosic biomass, but that the use of LPMO-containing cellulase cocktails in fermentation processes demands re-thinking of traditional process set ups due to the requirement of oxygen in the saccharification step. Biotechnol. Bioeng. 2017;114: 552-559. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Celulase/metabolismo , Ácido Láctico/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Biomassa , Celulase/química , Fermentação , Ácido Láctico/análise , Lactobacillales/enzimologia , Lactobacillales/metabolismo , Oxigenases de Função Mista/química , Oxigênio/metabolismo
4.
Microb Cell Fact ; 16(1): 101, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599651

RESUMO

BACKGROUND: Oleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order to find efficient fungal producers with desired fatty acid composition. Traditional cultivation methods (shake flask) and lipid analysis (extraction-gas chromatography) are not applicable for large-scale screening due to their low throughput and time-consuming analysis. Here we present a microcultivation system combined with high-throughput Fourier transform infrared (FTIR) spectroscopy for efficient screening of oleaginous fungi. RESULTS: The microcultivation system enables highly reproducible fungal fermentations throughout 12 days of cultivation. Reproducibility was validated by FTIR and HPLC data. Analysis of FTIR spectral ester carbonyl peaks of fungal biomass offered a reliable high-throughput at-line method to monitor lipid accumulation. Partial least square regression between gas chromatography fatty acid data and corresponding FTIR spectral data was used to set up calibration models for the prediction of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturation index, total lipid content and main individual fatty acids. High coefficients of determination (R2 = 0.86-0.96) and satisfactory residual predictive deviation of cross-validation (RPDCV = 2.6-5.1) values demonstrated the goodness of these models. CONCLUSIONS: We have demonstrated in this study, that the presented microcultivation system combined with rapid, high-throughput FTIR spectroscopy is a suitable screening platform for oleaginous fungi. Sample preparation for FTIR measurements can be automated to further increase throughput of the system.


Assuntos
Lipídeos/análise , Lipogênese , Técnicas Microbiológicas , Mucor/metabolismo , Mucorales/metabolismo , Penicillium/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Biomassa , Reatores Biológicos , Fermentação , Mucor/crescimento & desenvolvimento , Mucorales/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento
5.
Biotechnol Appl Biochem ; 61(1): 51-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23941546

RESUMO

Adaptation of Dekkera bruxellensis to lignocellulose hydrolysate was investigated. Cells of D. bruxellensis were grown for 72 and 192 H in batch and continuous culture, respectively (adapted cells). Cultivations in semisynthetic medium were run as controls (nonadapted cells). To test the adaptation, cells from these cultures were reinoculated in the lignocellulose medium, and growth and ethanol production characteristics were monitored. Cells adapted to lignocellulose hydrolysate had a shorter lag phase, grew faster, and produced a higher ethanol concentration as compared with nonadapted cells. A stability test showed that after cultivation in rich medium, cells partially lost the adapted phenotype but still showed faster growth and higher ethanol production as compared with nonadapted cells. Because alcohol dehydrogenase genes have been described to be involved in the adaptation to furfural in Saccharomyces cerevisiae, an analogous mechanism of adaptation to lignocelluloses hydrolysate of D. bruxellensis was hypothesized. However, gene expression analysis showed that genes homologous to S. cerevisiae ADH1 were not involved in the adaptation to lignocelluloses hydrolysate in D. bruxellensis.


Assuntos
Adaptação Fisiológica , Técnicas de Cultura Celular por Lotes , Biotecnologia , Dekkera/citologia , Dekkera/metabolismo , Lignina/metabolismo , Álcool Desidrogenase/genética , Dekkera/genética , Dekkera/fisiologia , Etanol/metabolismo , Fermentação , Hidrólise , Fenótipo , Transcrição Gênica
6.
Carbohydr Polym ; 340: 122317, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858030

RESUMO

Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Alga Marinha/química , Phaeophyceae/química , Phaeophyceae/enzimologia , Oligossacarídeos/química , Biomassa
7.
Int J Biol Macromol ; 229: 199-209, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36584780

RESUMO

Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.


Assuntos
Celulases , Phaeophyceae , Alga Marinha , Fucose/química , Polissacarídeos/química , Alga Marinha/química , Phaeophyceae/química , Alginatos
8.
Sci Total Environ ; 868: 161656, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36669668

RESUMO

Anaerobic digestion (AD) can be used as a stand-alone process or integrated as part of a larger biorefining process to produce biofuels, biochemicals and fertiliser, and has the potential to play a central role in the emerging circular bioeconomy (CBE). Agricultural residues, such as animal slurry, straw, and grass silage, represent an important resource and have a huge potential to boost biogas and methane yields. Under the CBE concept, there is a need to assess the long-term impact and investigate the potential accumulation of specific unwanted substances. Thus, a comprehensive literature review to summarise the benefits and environmental impacts of using agricultural residues for AD is needed. This review analyses the benefits and potential adverse effects related to developing biogas-centred CBE. The identified potential risks/challenges for developing biogas CBE include GHG emission, nutrient management, pollutants, etc. In general, the environmental risks are highly dependent on the input feedstocks and resulting digestate. Integrated treatment processes should be developed as these could both minimise risks and improve the economic perspective.


Assuntos
Agricultura , Biocombustíveis , Animais , Anaerobiose , Meio Ambiente , Poaceae , Metano
9.
Biotechnol Biofuels Bioprod ; 16(1): 77, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149601

RESUMO

Birch wood is a potential feedstock for biogas production in Northern Europe; however, the lignocellulosic matrix is recalcitrant preventing efficient conversion to methane. To improve digestibility, birch wood was thermally pre-treated using steam explosion at 220 °C for 10 min. The steam-exploded birch wood (SEBW) was co-digested with cow manure for a period of 120 days in continuously fed CSTRs where the microbial community adapted to the SEBW feedstock. Changes in the microbial community were tracked by stable carbon isotopes- and 16S r RNA analyses. The results showed that the adapted microbial culture could increase methane production up to 365 mL/g VS day, which is higher than previously reported methane production from pre-treated SEBW. This study also revealed that the microbial adaptation significantly increased the tolerance of the microbial community against the inhibitors furfural and HMF which were formed during pre-treatment of birch. The results of the microbial analysis indicated that the relative amount of cellulosic hydrolytic microorganisms (e.g. Actinobacteriota and Fibrobacterota) increased and replaced syntrophic acetate bacteria (e.g. Cloacimonadota, Dethiobacteraceae, and Syntrophomonadaceae) as a function of time. Moreover, the stable carbon isotope analysis indicated that the acetoclastic pathway became the main route for methane production after long-term adaptation. The shift in methane production pathway and change in microbial community shows that for anaerobic digestion of SEBW, the hydrolysis step is important. Although acetoclastic methanogens became dominant after 120 days, a potential route for methane production could also be a direct electron transfer among Sedimentibacter and methanogen archaea.

10.
Bioresour Technol ; 376: 128827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878374

RESUMO

In this study lignocellulosic sugars from Norway spruce were used for production of docosahexaenoic acid (DHA) by the marine thraustochytrid Aurantiochytrium limacinum SR21. Enzymatically prepared spruce hydrolysate was combined with a complex nitrogen source and different amounts of salts. Shake flask batch cultivations revealed that addition of extra salts was not needed for optimal growth. Upscaling to fed-batch bioreactors yielded up to 55 g/L cell dry mass and a total fatty acid content of 44% (w/w) out of which 1/3 was DHA. Fourier transform infrared spectroscopy was successfully applied as a rapid method for monitoring lipid accumulation in A. limacinum SR21. Thus, this proof-of-principle study clearly demonstrates that crude spruce hydrolysates can be directly used as a novel and sustainable resource for production of DHA.


Assuntos
Estramenópilas , Açúcares , Ácidos Docosa-Hexaenoicos , Reatores Biológicos , Ácidos Graxos
11.
Bioresour Technol ; 366: 128190, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326549

RESUMO

Delignification of steam-exploded birch wood (SEBW) was stimulated using a pretreatment method including Fenton reaction (FR) and fungi. SEBW was employed as a substrate to optimize the Fe(III) and Fe(II) dosage in FR. Maximum iron-binding to SEBW was obtained at pH 3.5. FR pretreatment increased biological methane yields from 257 mL/g vS in control to 383 and 352 mL/ g vS in samples with 0.5 mM Fe(II) and 1.0 mM Fe(III), respectively. Further enzymatic pretreatment using a commercial cellulase cocktail clearly improved methane production rate but only increased the final methane yields by 2-9 %. Finally, pretreatments with the fungi Pleurotus ostreatus (PO) and Lentinula edodes (LE), alone or in combination with FR, were carried out. SEBW pretreated with only LE and samples pretreated with PO and1 mM Fe(III) + H2O2 increased the methane production yield to 420 and 419 mL/g vS respectively. These pretreatments delignified SEBW up to 25 %.


Assuntos
Biocombustíveis , Pleurotus , Vapor , Madeira , Betula , Compostos Férricos , Peróxido de Hidrogênio , Metano , Compostos Ferrosos
12.
Foods ; 11(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35627018

RESUMO

Microalgal biomass is widely studied for its possible application in food and human nutrition due to its multiple potential health benefits, and to address raising sustainability concerns. An interesting field whereby to further explore the application of microalgae is that of beer brewing, due to the capacity of some species to accumulate large amounts of starch under specific growth conditions. The marine species Tetraselmis chui is a well-known starch producer, and was selected in this study for the production of biomass to be explored as an active ingredient in beer brewing. Cultivation was performed under nitrogen deprivation in 250 L tubular photobioreactors, producing a biomass containing 50% starch. The properties of high-starch microalgal biomass in a traditional mashing process were then assessed to identify critical steps and challenges, test the efficiency of fermentable sugar release, and develop a protocol for small-scale brewing trials. Finally, T. chui was successfully integrated at a small scale into the brewing process as an active ingredient, producing microalgae-enriched beer containing up to 20% algal biomass. The addition of microalgae had a noticeable effect on the beer properties, resulting in a product with distinct sensory properties. Regulation of pH proved to be a key parameter in the process.

13.
Bioresour Technol ; 354: 127222, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35477101

RESUMO

Tetraselmis chui is known to accumulate starch when subjected to stress. This phenomenon is widely studied for the purpose of industrial production and process development. Yet, knowledge about the metabolic pathways involved is still immature. Hence, in this study, transcription of 27 starch-related genes was monitored under nitrogen deprivation and resupply in 25 L tubular photobioreactors. T. chui proved to be an efficient starch producer under nitrogen deprivation, accumulating starch up to 56% of relative biomass content. The prolonged absence of nitrogen led to an overall down-regulation of the tested genes, in most instances maintained even after nitrogen replenishment when starch was actively degraded. These gene expression patterns suggest post-transcriptional regulatory mechanisms play a key role in T. chui under nutrient stress. Finally, the high productivity combined with an efficient recovery after nitrogen restitution makes this species a suitable candidate for industrial production of high-starch biomass.


Assuntos
Clorófitas , Microalgas , Biomassa , Clorófitas/metabolismo , Redes e Vias Metabólicas , Microalgas/metabolismo , Nitrogênio/metabolismo , Amido/metabolismo
14.
Biotechnol Biofuels ; 14(1): 170, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34416924

RESUMO

BACKGROUND: Biogas can be upgraded to methane biologically by adding H2 to biogas reactors. The process is called biological methanation (BM) and can be done in situ in a regular biogas reactor or the biogas can be transferred to a separate ex situ upgrading reactor. The hybrid BM concept, a combination of in situ and ex situ BM, has received little attention, and only a few studies have been reported. The hybrid BM has the advantage of resolving the issue of pH increment during in situ BM, while the size of the ex situ BM reactor could be reduced. RESULTS: In this study, the efficiency of in situ and hybrid biological methanation (BM) for upgrading raw biogas was investigated. The hybrid BM system achieved a CH4 yield of 257 mL gVS-1 when degrading a feedstock blend of manure and cheese waste. This represented an increase in methane yield of 76% when compared to the control reactor with no H2 addition. A 2:1 H2:CO2 ratio resulted in stable reactor performance, while a 4:1 ratio resulted in a high accumulation of volatile fatty acids. H2 consumption rate was improved when a low manure-cheese waste ratio (90%:10%) was applied. Furthermore, feeding less frequently (every 48 h) resulted in a higher CH4 production from CO2 and H2. Methanothermobacter was found to dominate the archaeal community in the in situ BM reactor, and its relative abundance increased over the experimental time. Methanosarcina abundance was negatively affected by H2 addition and was nearly non-existent at the end of the experiment. CONCLUSIONS: Our results show that hybrid BM outperforms in situ BM in terms of total CH4 production and content of CH4 in the biogas. In comparison to in situ BM, the use of hybrid BM increased CH4 yield by up to 42%. Furthermore, addition of H2 at 2:1 H2:CO2 ratio in in situ BM resulted in stable reactor operation.

15.
Biotechnol Biofuels ; 14(1): 46, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602308

RESUMO

BACKGROUND: Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous H2O2 supply can boost saccharification yields, while overdosing H2O2 may lead to enzyme inactivation and reduce overall sugar yields. While following LPMO action by ex situ analysis of LPMO products confirms enzyme inactivation, currently no preventive measures are available to intervene before complete inactivation. RESULTS: Here, we carried out enzymatic saccharification of the model cellulose Avicel with an LPMO-containing enzyme preparation (Cellic CTec3) and H2O2 feed at 1 L bioreactor scale and followed the oxidation-reduction potential and H2O2 concentration in situ with corresponding electrode probes. The rate of oxidation of the reductant as well as the estimation of the amount of H2O2 consumed by LPMOs indicate that, in addition to oxidative depolymerization of cellulose, LPMOs consume H2O2 in a futile non-catalytic cycle, and that inactivation of LPMOs happens gradually and starts long before the accumulation of LPMO-generated oxidative products comes to a halt. CONCLUSION: Our results indicate that, in this model system, the collapse of the LPMO-catalyzed reaction may be predicted by the rate of oxidation of the reductant, the accumulation of H2O2 in the reactor or, indirectly, by a clear increase in the oxidation-reduction potential. Being able to monitor the state of the LPMO activity in situ may help maximizing the benefit of LPMO action during saccharification. Overcoming enzyme inactivation could allow improving overall saccharification yields beyond the state of the art while lowering LPMO and, potentially, cellulase loads, both of which would have beneficial consequences on process economics.

16.
Animals (Basel) ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34438866

RESUMO

Yeast is a microbial feed ingredient that can be produced from non-food biomasses. Brown seaweed contains high levels of complex carbohydrates that are not digested to any extent by monogastric animals but can be used as carbon sources for yeast production. The objective of this study was to investigate how minerals originating from brown macroalgae (Saccharina latissima) are incorporated in Cyberlindnera jadinii yeast and to assess the bioavailability of these different minerals as well as their accumulation into different organs of Atlantic salmon. The yeast C. jadinii was produced on a seaweed hydrolysate mixed with a sugar-rich wood hydrolysate in a 9:1 volume ratio and fed to Atlantic salmon (Salmo salar) in two different experiments: a digestibility experiment with 30% dietary inclusion of yeast and a retention experiment with increasing inclusion of yeast (5, 10, and 20%). Seaweed minerals such as zinc (Zn), copper (Cu), iodine (I), manganese (Mn), and cobalt (Co) were incorporated to a high degree in the yeast. The apparent fecal excretion of minerals was similar in both experiments, in general, with low excretion of, I, bromine (Br), and arsenic (As) (ranging from 18.0% to 63.5%) and high excretion of iron (Fe), Cu, Mn, aluminum (Al), cadmium (Cd) and lead (Pb) (ranging from 56.9% to <100%), despite the different fish size and fecal sampling method. High levels of Cu, I, Br, and Co in the yeast resulted in a linear decrease (p < 0.05) in retention of these minerals in salmon fed increasing levels of yeast. Despite increasing amounts of these minerals in the feed, whole-body levels of Cu and Mn remained stable, whereas whole-body levels of Co, somewhat unexpectedly, decreased with increased dietary yeast inclusion. The Cd from the yeast had low bioavailability but was concentrated more in the kidney (0.038 mg kg-1) and liver (0.025 mg kg-1) than in muscle (0.0009 mg kg-1). The given Cd level in fish strengthens the indication that it is safe to feed salmon with up to 20% inclusion of seaweed yeast without exceeding the maximum limit for Cd of 0.05 mg kg-1 w.w. in fish meat. The level and retention (p < 0.05) of As were lower in the yeast compared to fishmeal. The high level of iodine in S. latissima (3900 mg kg-1) was partly transferred to the yeast, and salmon fed increasing levels of yeast displayed a linear increase in whole-body I content (p < 0.05). There is, however, a need for a growth experiment with larger fish to draw any firm conclusions regarding food safety. Overall, this study shows that yeast grown on hydrolyzed seaweed can be a suitable mineral source for Atlantic salmon, especially when diets are low in fishmeal.

17.
J Fungi (Basel) ; 7(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920847

RESUMO

Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.

18.
Sci Rep ; 11(1): 4496, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627754

RESUMO

Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.


Assuntos
Salmo salar/fisiologia , Leveduras/química , Ração Animal , Animais , Aquicultura/métodos , Galinhas , Enterite/fisiopatologia , Mucosa Intestinal/fisiologia
19.
J Fungi (Basel) ; 6(4)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143254

RESUMO

The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate.

20.
Sci Rep ; 10(1): 7844, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398689

RESUMO

In this study we explore the potential of using Fourier-transform infrared (FTIR) spectra of trifluoroacetate-protein and peptide complexes for monitoring proteolytic reactions. The idea of treating dry-films of protein hydrolysates with trifluoroacetic acid (TFA) prior to FTIR analysis is based on the unique properties of TFA. By adding a large excess of TFA to protein hydrolysate samples, the possible protonation sites of the proteins and peptides will be saturated. In addition, TFA has a low boiling point when protonated as well as complex-forming abilities. When forming TFA-treated dry-films of protein hydrolysates, the excess TFA will evaporate and the deprotonated acid (CF3COO-) will interact as a counter ion with the positive charges on the sample materials. In the study, spectral changes in TFA-treated dry-films of protein hydrolysates from a pure protein and poultry by-products, were compared to the FTIR fingerprints of untreated dry-films. The results show that time-dependent information related to proteolytic reactions and, consequently, on the characteristics of the protein hydrolysates can be obtained. With additional developments, FTIR on dry-films treated with TFA may be regarded as a potential future tool for the analysis of all types of proteolytic reactions in the laboratory as well as in industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA