Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biomech ; 74: 192-196, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29636179

RESUMO

Simulations of soft tissue mechanobiological behaviour are increasingly important for clinical prediction of aneurysm, tendinopathy and other disorders. Mechanical behaviour at low stretches is governed by fibril straightening, transitioning into load-bearing at recruitment stretch, resulting in a tissue stiffening effect. Previous investigations have suggested theoretical relationships between stress-stretch measurements and recruitment probability density function (PDF) but not derived these rigorously nor evaluated these experimentally. Other work has proposed image-based methods for measurement of recruitment but made use of arbitrary fibril critical straightness parameters. The aim of this work was to provide a sound theoretical basis for estimating recruitment PDF from stress-stretch measurements and to evaluate this relationship using image-based methods, clearly motivating the choice of fibril critical straightness parameter in rat tail tendon and porcine artery. Rigorous derivation showed that the recruitment PDF may be estimated from the second stretch derivative of the first Piola-Kirchoff tissue stress. Image-based fibril recruitment identified the fibril straightness parameter that maximised Pearson correlation coefficients (PCC) with estimated PDFs. Using these critical straightness parameters the new method for estimating recruitment PDF showed a PCC with image-based measures of 0.915 and 0.933 for tendons and arteries respectively. This method may be used for accurate estimation of fibril recruitment PDF in mechanobiological simulation where fibril-level mechanical parameters are important for predicting cell behaviour.


Assuntos
Artérias/fisiologia , Colágeno/fisiologia , Modelos Biológicos , Tendões/fisiologia , Animais , Fenômenos Biomecânicos , Ratos , Estresse Mecânico , Suínos , Suporte de Carga
2.
Biomech Model Mechanobiol ; 17(2): 403-417, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29039043

RESUMO

In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.


Assuntos
Colágeno/metabolismo , Bexiga Urinária/metabolismo , Animais , Fenômenos Biomecânicos , Complacência (Medida de Distensibilidade) , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Mucosa/metabolismo , Músculo Liso/metabolismo , Ratos Endogâmicos F344 , Estresse Mecânico , Suporte de Carga
3.
Acta Biomater ; 64: 59-66, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28951123

RESUMO

Urodynamic tests are the gold standard for the diagnosis of bladder dysfunction, and the mechanical compliance of the bladder is an important parameter in these tests. The bladder wall has a layered structure, differentially affected by pathology, so knowledge of the contribution and role of these layers and their constituents to overall bladder compliance will enhance interpretation of these clinical tests. In this study we document the functional morphology of the detrusor and lamina propria of the murine bladder wall using a custom in-situ tensile loading system under multiphoton microscopy (MPM) observation in unloaded state and under incremental uniaxial stretch. Features in the stress-stretch curves of bladder samples were then directly related to corresponding MPM images. Collagen organisation across wall depth was quantified using image analysis techniques. The hypothesis that the lamina propria deformed at low strain by unfolding of the rugae and rearranging collagen fibrils was confirmed. A novel 'pocket' feature in the detrusor was observed along with extensive rearrangement of fibrils in two families at different depths, providing higher stiffness at high stretches in the detrusor. The very different deformations of detrusor and lamina propria were accommodated by the highly coiled structure of collagen in the lamina propria. Imaging and mechanical studies presented here allow gross mechanical response to be attributed to specific components of the bladder wall and further, may be used to investigate the impact of microstructural changes due to pathology or aging, and how they impair tissue functionality. STATEMENT OF SIGNIFICANCE: This article reports the first in-situ multiphoton microscopy observations of microstructural deformation under uniaxial tensile loading of ex vivo bladder. We describe collagen rearrangement through the tissue thickness and relate this directly to the stress-stretch behaviour. We confirm for the first time the unfolding of rugae and realignment of fibrils in the lamina propria during extension and the rapid stiffening as two fibril families in the detrusor are engaged. This technique provides new insight into microstructure function and will enhance understanding of the impact of changes due to pathology or aging.


Assuntos
Envelhecimento , Microscopia de Fluorescência por Excitação Multifotônica , Resistência à Tração , Bexiga Urinária , Urodinâmica , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Masculino , Camundongos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA