RESUMO
BACKGROUND: The Bacillus-derived cyclic lipopeptides (surfactin, iturin, and fengycin) form potent Heterogeneous Lipopeptide Micelle (HeLM) complexes. HeLM is a small molecule that has been shown to have immunomodulatory effects. However, how HeLM regulates inflammation is not clear, moreover its application to Inflammatory Bowel Disease (IBD), specifically Ulcerative Colitis (UC), has not been tested before. AIMS: To use a murine model of IBD and determine the effects of HeLM and related molecular mechanisms of action. METHODS: Colitis was induced in mice by administration of 4% Dextran Sodium Sulfate. Three preparations were tested against negative and positive controls: Purified HeLM, the wild-type strain that produces it, and an isogenic mutant that does not produce HeLM. Clinical, biochemical, and histological scoring systems were used to assess the severity of colitis. RT-qPCR and cell cultures were used to determine the levels of molecular signaling. Fecal samples were processed for metagenomic analysis. RESULTS: Purified HeLM, and the wild-type strain, significantly decreased the severity of colitis as determined by the disease activity index (DAI), mouse colitis histology index (MCHI), fecal calprotectin, and colonic length. This effect was not seen in the mutant. HeLM was found to be an agonist to TLR-2, seemingly activating the Toll-Like Receptor 2/IL-10 pathway, with subsequent downregulation of inflammatory cytokines (TNF-α, IL-1ß, and IL-6). At higher concentrations HeLM inhibited lipopolysaccharide ligands from activating TLR-4. The reduction in colitis was not due to microbiome modulation, as had previously been hypothesized. CONCLUSION: Our results indicate that HeLM ameliorates colitis by TLR-2-induced IL-10 production and possibly via the inhibition of lipopolysaccharide.
Assuntos
Bacillus , Modelos Animais de Doenças , Lipopeptídeos , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/agonistas , Lipopeptídeos/farmacologia , Camundongos , Sulfato de Dextrana , Humanos , Camundongos Endogâmicos C57BL , Colite/microbiologia , Colite/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Peptídeos Cíclicos/farmacologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológicoRESUMO
INTRODUCTION: The environmentally acquired aerobic spore-forming (EAS-Fs) bacteria that are ubiquitous in nature (e.g., soil) are transient colonisers of the mammalian gastro-intestinal tract. Without regular exposure, their numbers quickly diminish. These species of bacteria have been suggested to be essential to the normal functioning of metabolic and immunogenic health. The modern Western lifestyle restricts exposure to these EAS-Fs, possibly explaining part of the pathogenesis of many Western diseases. To date, the only animal studies that address specific microbiome modelling are based around germ-free animals. We have designed a new animal model that specifically restricts exposure to environmental sources of bacteria. METHODOLOGY: A new protocol, termed Super Clean, which involves housing mice in autoclaved individually ventilated cages (IVCs), with autoclaved food/water and strict ascetic handling practice was first experimentally validated. The quantification of EAS-Fs was assessed by heat-treating faecal samples and measuring colony-forming units (CFUs). This was then compared to mice in standard conditions. Mice were housed in their respective groups from birth until 18 months. Stool samples were taken throughout the experiment to assess for abundance in transiently acquired environmental bacteria. Clinical, biochemical, histological, and gene expression markers were analysed for diabetes, hypercholesterolaemia, obesity, inflammatory bowel disease, and non-alcoholic fatty liver disease (the "diseases of the West"). RESULTS: Our results show that stringent adherence to the Super Clean protocol produces a significantly decreased abundance of aerobic spore-forming Bacillota after 21 days. This microbiomic shift was correlated with significantly increased levels of obesity and impaired glucose metabolism. There was no evidence of colitis, liver disease or hypercholesterolaemia. CONCLUSIONS: This new murine model successfully isolates EAS-Fs and has potential utility for future research, allowing for an investigation into the clinical impact of living in relative hygienic conditions.