Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 632(8023): 139-146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961289

RESUMO

Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.


Assuntos
Adenosina , Astrócitos , Encéfalo , Metabolismo Energético , Neurônios , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Ratos , Adenosina/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/citologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/metabolismo , Receptor A2B de Adenosina/deficiência , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Reconhecimento Psicológico/fisiologia , Sono/genética , Sono/fisiologia , Sinapses/metabolismo
2.
Mol Cell Neurosci ; 124: 103806, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592801

RESUMO

Previously, we have shown that purinergic signalling is involved in the control of hyperosmotic-induced sympathoexcitation at the level of the PVN, via activation of P2X receptors. However, the source(s) of ATP that drives osmotically-induced increases in sympathetic outflow remained undetermined. Here, we tested the two competing hypotheses that either (1) higher extracellular ATP in PVN during salt loading (SL) is a result of a failure of ectonucleotidases to metabolize ATP; and/or (2) SL can stimulate PVN astrocytes to release ATP. Rats were salt loaded with a 2 % NaCl solution replacing drinking water up to 4 days, an experimental model known to cause a gradual increase in blood pressure and plasma osmolarity. Immunohistochemical assessment of glial-fibrillary acidic protein (GFAP) revealed increased glial cell reactivity in the PVN of rats after 4 days of high salt exposure. ATP and adenosine release measurements via biosensors in hypothalamic slices showed that baseline ATP release was increased 17-fold in the PVN while adenosine remained unchanged. Disruption of Ca2+-dependent vesicular release mechanisms in PVN astrocytes by virally-driven expression of a dominant-negative SNARE protein decreased the release of ATP. The activity of ectonucleotidases quantified in vitro by production of adenosine from ATP was increased in SL group. Our results showed that SL stimulates the release of ATP in the PVN, at least in part, from glial cells by a vesicle-mediated route and likely contributes to the neural control of circulation during osmotic challenges.


Assuntos
Núcleo Hipotalâmico Paraventricular , Cloreto de Sódio , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Astrócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina
3.
J Hepatol ; 78(1): 180-190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995127

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has been associated with mild cerebral dysfunction and cognitive decline, although the exact pathophysiological mechanism remains ambiguous. Using a diet-induced model of NAFLD and monocarboxylate transporter-1 (Mct1+/-) haploinsufficient mice, which resist high-fat diet-induced hepatic steatosis, we investigated the hypothesis that NAFLD leads to an encephalopathy by altering cognition, behaviour, and cerebral physiology. We also proposed that global MCT1 downregulation offers cerebral protection. METHODS: Behavioural tests were performed in mice following 16 weeks of control diet (normal chow) or high-fat diet with high fructose/glucose in water. Tissue oxygenation, cerebrovascular reactivity, and cerebral blood volume were monitored under anaesthesia by multispectral optoacoustic tomography and optical fluorescence. Cortical mitochondrial oxygen consumption and respiratory capacities were measured using ex vivo high-resolution respirometry. Microglial and astrocytic changes were evaluated by immunofluorescence and 3D reconstructions. Body composition was assessed using EchoMRI, and liver steatosis was confirmed by histology. RESULTS: NAFLD concomitant with obesity is associated with anxiety- and depression-related behaviour. Low-grade brain tissue hypoxia was observed, likely attributed to the low-grade brain inflammation and decreased cerebral blood volume. It is also accompanied by microglial and astrocytic morphological and metabolic alterations (higher oxygen consumption), suggesting the early stages of an obesogenic diet-induced encephalopathy. Mct1 haploinsufficient mice, despite fat accumulation in adipose tissue, were protected from NAFLD and associated cerebral alterations. CONCLUSIONS: This study provides evidence of compromised brain health in obesity and NAFLD, emphasising the importance of the liver-brain axis. The protective effect of Mct1 haploinsufficiency points to this protein as a novel therapeutic target for preventing and/or treating NAFLD and the associated brain dysfunction. IMPACT AND IMPLICATIONS: This study is focused on unravelling the pathophysiological mechanism by which cerebral dysfunction and cognitive decline occurs during NAFLD and exploring the potential of monocarboxylate transporter-1 (MCT1) as a novel preventive or therapeutic target. Our findings point to NAFLD as a serious health risk and its adverse impact on the brain as a potential global health system and economic burden. These results highlight the utility of Mct1 transgenic mice as a model for NAFLD and associated brain dysfunction and call for systematic screening by physicians for early signs of psychological symptoms, and an awareness by individuals at risk of these potential neurological effects. This study is expected to bring attention to the need for early diagnosis and treatment of NAFLD, while having a direct impact on policies worldwide regarding the health risk associated with NAFLD, and its prevention and treatment.


Assuntos
Encefalopatias , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Obesidade/metabolismo , Camundongos Transgênicos , Encefalopatias/metabolismo , Encefalopatias/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
4.
J Neurosci ; 40(15): 3052-3062, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32132265

RESUMO

Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.


Assuntos
Astrócitos/fisiologia , Barorreflexo/fisiologia , Núcleo Solitário/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Masculino , Neurônios Aferentes/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Proteínas SNARE/fisiologia , Serotonina/farmacologia , Estimulação do Nervo Vago
5.
J Neurosci ; 40(49): 9364-9371, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122390

RESUMO

Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signaling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (1) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knock-down; (2) antagonists of TRPV4 channels; (3) antagonist of P2Y1 receptors for ATP; and (4) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knock-out mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signaling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENT There is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 (Cx43) hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia, and reduced perfusion.


Assuntos
Astrócitos/fisiologia , Mecanotransdução Celular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Circulação Cerebrovascular/fisiologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Feminino , Frequência Cardíaca/fisiologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Knockout , Peptídeos/antagonistas & inibidores , Peptídeos/genética , Estimulação Física , Ratos , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
6.
J Hepatol ; 70(1): 40-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201461

RESUMO

BACKGROUND & AIMS: Neuronal function is exquisitely sensitive to alterations in the extracellular environment. In patients with hepatic encephalopathy (HE), accumulation of metabolic waste products and noxious substances in the interstitial fluid of the brain is thought to result from liver disease and may contribute to neuronal dysfunction and cognitive impairment. This study was designed to test the hypothesis that the accumulation of these substances, such as bile acids, may result from reduced clearance from the brain. METHODS: In a rat model of chronic liver disease with minimal HE (the bile duct ligation [BDL] model), we used emerging dynamic contrast-enhanced MRI and mass-spectroscopy techniques to assess the efficacy of the glymphatic system, which facilitates clearance of solutes from the brain. Immunofluorescence of aquaporin-4 (AQP4) and behavioural experiments were also performed. RESULTS: We identified discrete brain regions (olfactory bulb, prefrontal cortex and hippocampus) of altered glymphatic clearance in BDL rats, which aligned with cognitive/behavioural deficits. Reduced AQP4 expression was observed in the olfactory bulb and prefrontal cortex in HE, which could contribute to the pathophysiological mechanisms underlying the impairment in glymphatic function in BDL rats. CONCLUSIONS: This study provides the first experimental evidence of impaired glymphatic flow in HE, potentially mediated by decreased AQP4 expression in the affected regions. LAY SUMMARY: The 'glymphatic system' is a newly discovered brain-wide pathway that facilitates clearance of various substances that accumulate in the brain due to its activity. This study evaluated whether the function of this system is altered in a model of brain dysfunction that occurs in cirrhosis. For the first time, we identified that the clearance of substances from the brain in cirrhosis is reduced because this clearance system is defective. This study proposes a new mechanism of brain dysfunction in patients with cirrhosis and provides new targets for therapy.


Assuntos
Aquaporina 4/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Sistema Glinfático/metabolismo , Encefalopatia Hepática/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Sistema Glinfático/fisiopatologia , Encefalopatia Hepática/diagnóstico , Encefalopatia Hepática/fisiopatologia , Pressão Intracraniana , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
7.
Glia ; 66(6): 1185-1199, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29274121

RESUMO

Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Animais , Humanos
8.
Hepatology ; 65(4): 1306-1318, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28066916

RESUMO

The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte-neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia-lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia-induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. CONCLUSION: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel-mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306-1318).


Assuntos
Córtex Cerebral/metabolismo , Conexina 26/metabolismo , Encefalopatia Hepática/fisiopatologia , Hiperamonemia/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Amônia/metabolismo , Análise de Variância , Animais , Ductos Biliares/cirurgia , Biomarcadores/metabolismo , Western Blotting , Doença Crônica , Modelos Animais de Doenças , Encefalopatia Hepática/metabolismo , Hiperamonemia/fisiopatologia , Lactatos/metabolismo , Ligadura , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
9.
Exp Physiol ; 102(4): 389-396, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28120502

RESUMO

NEW FINDINGS: What is the central question of this study? Arterial hypertension is associated with impaired neurovascular coupling in the somatosensory cortex. Abnormalities in activity-dependent oxygen consumption in brainstem regions involved in the control of cardiovascular reflexes have not been explored previously. What is the main finding and its importance? Using fast-cyclic voltammetry, we found that changes in local tissue PO2 in the nucleus tractus solitarii induced by electrical stimulation of the vagus nerve are significantly impaired in spontaneously hypertensive rats. This is consistent with previous observations showing that brainstem hypoxia plays an important role in the pathogenesis of arterial hypertension. The effects of arterial hypertension on cerebral blood flow remain poorly understood. Haemodynamic responses within the somatosensory cortex have been shown to be impaired in the spontaneously hypertensive rat (SHR) model. However, it is unknown whether arterial hypertension affects oxygen homeostasis in vital brainstem areas that control cardiovascular reflexes. In this study, we assessed vagus nerve stimulation-induced changes in local tissue PO2 (PtO2) in the caudal nucleus tractus solitarii (cNTS) of SHRs and normotensive Wistar rats. Measurements of PtO2 were performed using a novel application of fast-cyclic voltammetry, which allows higher temporal resolution of O2 changes than traditional optical fluorescence techniques. Electrical stimulation of the central cut end of the vagus nerve (ESVN) caused profound reductions in arterial blood pressure along with biphasic changes in PtO2 in the cNTS, characterized by a rapid decrease in PtO2 ('initial dip') followed by a post-stimulus overshoot above baseline. The initial dip was found to be significantly smaller in SHRs compared with normotensive Wistar rats even after ganglionic blockade. The post-ESVN overshoot was similar in both groups but was reduced in Wistar rats after ganglionic blockade. In conclusion, neural activity-dependent changes in tissue oxygen in brainstem cardiovascular autonomic centres are significantly impaired in animals with arterial hypertension.


Assuntos
Homeostase/fisiologia , Hipertensão/metabolismo , Oxigênio/metabolismo , Núcleo Solitário/metabolismo , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Frequência Cardíaca/fisiologia , Hipertensão/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Núcleo Solitário/fisiopatologia
10.
J Neurosci ; 35(13): 5284-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834053

RESUMO

The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.


Assuntos
Trifosfato de Adenosina/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética , Transdução de Sinais , Córtex Somatossensorial/fisiologia , Fosfatase Ácida , Trifosfato de Adenosina/antagonistas & inibidores , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Estimulação Elétrica , Membro Anterior/fisiologia , Neuroimagem Funcional , Masculino , Microinjeções , Proteínas Tirosina Fosfatases/administração & dosagem , Proteínas Tirosina Fosfatases/genética , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/metabolismo
11.
Exp Physiol ; 101(5): 588-98, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26876733

RESUMO

NEW FINDINGS: What is the central question of this study? Does genetic ablation of neurokinin-1 receptors alter arterial blood pressure? What is the main finding and its importance? NK1R(-/-) mice have increased mean arterial blood pressure, but without a concomitant change in vascular reactivity. This finding suggests that neurokinin-1 receptors play a role in the neural regulation of blood pressure. Mice with functional ablation of the neurokinin-1 receptor gene, Tacr1, (NK1R(-/-) ) express behavioural abnormalities equivalent to those seen in attention deficit hyperactivity disorder (ADHD). An established model of ADHD is the spontaneously hypertensive rat, which exhibits high blood pressure owing to increased central sympathetic drive. In light of the evidence that the neurokinin-1 receptor (NK1R) also influences cardiovascular haemodynamics, we have investigated whether NK1R(-/-) mice exhibit raised blood pressure. Cardiovascular parameters were recorded for 24 h in conscious mice using radiotelemetry. Vascular function was assessed in mesenteric resistance arteries by wire myography. The NK1R(-/-) mice exhibited a higher blood pressure than wild-type animals throughout the 24 h period. Heart rate and locomotor activity in NK1R(-/-) mice were higher than in wild-type mice during the night period (active phase), consistent with an ADHD-like phenotype, but not during the day. Mesenteric and renal arteries from NK1R(-/-) mice exhibited normal vascular function; the responses to vasoconstrictors (U46619 and phenylephrine) and the endothelium-dependent vasodilator, acetylcholine, were not altered in these animals, suggesting that the NK1R does not regulate vascular tone. Analysis of heart rate variability revealed a higher low-frequency to high-frequency ratio in NK1R(-/-) mice, indicative of increased cardiac sympathetic activity. We propose that the raised blood pressure in NK1R(-/-) mice could be due to a neural mechanism rather than a change in vascular reactivity. Further studies are required to understand this mechanism and to establish whether a subgroup of ADHD patients with polymorphism of the equivalent (TACR1) gene are affected in a similar way.


Assuntos
Pressão Arterial/fisiologia , Artérias/metabolismo , Artérias/fisiopatologia , Comportamento Animal/fisiologia , Receptores da Neurocinina-1/metabolismo , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Tempo de Reação/fisiologia
12.
J Physiol ; 593(7): 1715-29, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25694117

RESUMO

The nucleus tractus solitarii (NTS) integrates inputs from cardiovascular afferents and thus is crucial for cardiovascular homeostasis. These afferents primarily release glutamate, although 5-HT has also been shown to play a role in their actions. Using fast-cyclic voltammetry, an increase in 5-HT concentrations (range 12-50 nm) could be detected in the NTS in anaesthetized rats in response to electrical stimulation of the vagus and activation of cardiopulmonary, chemo- and baroreceptor reflexes. This 5-HT signal was not potentiated by the serotonin transporter (SERT) or the noradrenaline transporter (NET) inhibitors citalopram and desipramine (1 mg kg(-1) ). However, decynium-22 (600 µg kg(-1) ), an organic cation 3 transporter (OCT3)/plasma membrane monoamine transporter (PMAT) inhibitor, increased the 5-HT signal by 111 ± 21% from 29 ± 10 nm. The effectiveness of these inhibitors was tested against the removal time of 5-HT and noradrenaline applied by microinjection to the NTS. Citalopram and decynium-22 attenuated the removal of 5-HT but not noradrenaline, whereas desipramine had the reverse action. The OCT3 inhibitor corticosterone (10 mg kg(-1) ) had no effect. Blockade of glutamate receptors with topical kynurenate (10-50 nm) reduced the vagally evoked 5-HT signal by 50%, indicating that this release was from at least two sources. It is concluded that vagally evoked 5-HT release is under the regulation of the high-capacity, low-affinity transporter PMAT, not the low-capacity, high-affinity transporter SERT. This is the first demonstration that PMAT may be playing a physiological role in the regulation of 5-HT transmission and this could indicate that 5-HT is acting, in part, as a volume transmitter within the NTS.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Serotonina/fisiologia , Núcleo Solitário/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Citalopram/farmacologia , Desipramina/farmacologia , Estimulação Elétrica , Proteínas de Transporte de Nucleosídeo Equilibrativas/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Masculino , Norepinefrina/farmacologia , Quinolinas/farmacologia , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Núcleo Solitário/efeitos dos fármacos , Nervo Vago/fisiologia
14.
J Pharmacol Exp Ther ; 349(2): 288-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618127

RESUMO

The effect of blockade of either 5-hydroxytryptamine (5-HT)/serotonin transporter (SERT) with citalopram or the organic cation transporter 3 (OCT3)/plasma membrane monoamine transporter (PMAT) with decynium-22 (D-22) on spontaneous and evoked release of 5-HT in the nucleus tractus solitarius (NTS) was investigated in rat brainstem slices treated with gabazine. 5-HT release was measured indirectly by changes in the frequency and amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) [in the presence of tetrodotoxin (TTX)] and evoked EPSCs. Blockade of 5-HT3 receptors with granisetron reduced, whereas the 5-HT3 agonist phenylbiguanide increased, the frequency of mEPSCs. 5-HT decreased mEPSC frequency at low concentrations and increased frequency at high concentrations. This inhibition was blocked by the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635), which was ineffective on its own, whereas the excitation was reversed by granisetron. The addition of citalopram or D-22 caused inhibition, which was prevented by 5-HT1A blockade. Thus, in the NTS, the spontaneous release of 5-HT is able to activate 5-HT3 receptors, but not 5-HT1A receptors, as the release in their vicinity is removed by uptake. The ineffectiveness of corticosterone suggests that the low-affinity, high-capacity transporter is PMAT, not OCT3. For evoked 5-HT release, only D-22 caused an increase in the amplitude of EPSCs, with a decrease in the paired pulse ratio, and increased the number of spontaneous EPSCs after 20-Hz stimulation. Thus, for the evoked release of 5-HT, the low-affinity, high-capacity transporter PMAT, but not 5-HT transporter (5-HTT)/SERT, is important in the regulation of changes in 5-HT extracellular concentration.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Núcleo Solitário/metabolismo , Nervo Vago/fisiologia , Animais , Citalopram/farmacologia , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Masculino , Potenciais Pós-Sinápticos em Miniatura , Neurônios/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/antagonistas & inibidores , Piridazinas/farmacologia , Quinolinas/farmacologia , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Núcleo Solitário/efeitos dos fármacos , Transmissão Sináptica
15.
J Cereb Blood Flow Metab ; 44(4): 508-515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37873754

RESUMO

Perivascular spaces mediate a complex interaction between cerebrospinal fluid and brain tissue that may be an important pathway for solute waste clearance. Their structural or functional derangement may contribute to the development of age-related neurogenerative conditions. Here, we employed a non-invasive low b-value diffusion-weighted ECG-gated MRI method to capture perivascular fluid movement around the middle cerebral artery of the anaesthetised rat brain. Using this method, we show that such MRI estimates of perivascular fluid movement directionality are highly sensitive to the cardiac cycle. We then show that these measures of fluid movement directionality are decreased in the angiotensin-II pharmacological model of acute hypertension, with an associated dampening of vessel pulsatility. This translational MRI method may, therefore, be useful to monitor derangement of perivascular fluid movement associated with cardiovascular pathologies, such as hypertension, in order to further our understanding of perivascular function in neurology.


Assuntos
Hipertensão , Artéria Cerebral Média , Ratos , Animais , Imageamento por Ressonância Magnética , Hipertensão/metabolismo , Difusão , Encéfalo/irrigação sanguínea , Líquido Cefalorraquidiano/metabolismo
16.
Cell Rep ; 42(12): 113514, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041814

RESUMO

During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.


Assuntos
Hipóxia Encefálica , Nitritos , Humanos , Nitritos/metabolismo , Astrócitos/metabolismo , Óxido Nítrico/metabolismo , Molibdênio/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Hipóxia Encefálica/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Circulação Cerebrovascular
17.
JHEP Rep ; 4(8): 100509, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35865351

RESUMO

Background & Aims: Increased plasma ammonia concentration and consequent disruption of brain energy metabolism could underpin the pathogenesis of hepatic encephalopathy (HE). Brain energy homeostasis relies on effective maintenance of brain oxygenation, and dysregulation impairs neuronal function leading to cognitive impairment. We hypothesised that HE is associated with reduced brain oxygenation and we explored the potential role of ammonia as an underlying pathophysiological factor. Methods: In a rat model of chronic liver disease with minimal HE (mHE; bile duct ligation [BDL]), brain tissue oxygen measurement, and proton magnetic resonance spectroscopy were used to investigate how hyperammonaemia impacts oxygenation and metabolic substrate availability in the central nervous system. Ornithine phenylacetate (OP, OCR-002; Ocera Therapeutics, CA, USA) was used as an experimental treatment to reduce plasma ammonia concentration. Results: In BDL animals, glucose, lactate, and tissue oxygen concentration in the cerebral cortex were significantly lower than those in sham-operated controls. OP treatment corrected the hyperammonaemia and restored brain tissue oxygen. Although BDL animals were hypotensive, cortical tissue oxygen concentration was significantly improved by treatments that increased arterial blood pressure. Cerebrovascular reactivity to exogenously applied CO2 was found to be normal in BDL animals. Conclusions: These data suggest that hyperammonaemia significantly decreases cortical oxygenation, potentially compromising brain energy metabolism. These findings have potential clinical implications for the treatment of patients with mHE. Lay summary: Brain dysfunction is a serious complication of cirrhosis and affects approximately 30% of these patients; however, its treatment continues to be an unmet clinical need. This study shows that oxygen concentration in the brain of an animal model of cirrhosis is markedly reduced. Low arterial blood pressure and increased ammonia (a neurotoxin that accumulates in patients with liver failure) are shown to be the main underlying causes. Experimental correction of these abnormalities restored oxygen concentration in the brain, suggesting potential therapeutic avenues to explore.

18.
Nat Commun ; 13(1): 2125, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440557

RESUMO

Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3- transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.


Assuntos
Acoplamento Neurovascular , Animais , Dióxido de Carbono/metabolismo , Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Simportadores de Sódio-Bicarbonato/genética
19.
J Cereb Blood Flow Metab ; 42(12): 2188-2190, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113055

RESUMO

This study evaluated the association between systemic arterial blood pressure and cerebral perfusion in 740 participants of the UK's largest tri-ethnic study with measurements of cerebral blood flow (CBF) performed using arterial spin labelling MRI. A significant negative correlation between blood pressure, age and CBF was observed across the patient cohort. The lowest CBF values were recorded in the group of patients with hypertension that were prescribed with anti-hypertensive drugs, but uncontrolled on medication. These findings confirm that hypertension is associated with reduced cerebral perfusion and highlight the importance of blood pressure control for the benefit of maintaining brain blood flow.


Assuntos
Circulação Cerebrovascular , Hipertensão , Humanos , Circulação Cerebrovascular/fisiologia , Perfusão , Hipertensão/tratamento farmacológico , Imageamento por Ressonância Magnética , Pressão Sanguínea , Marcadores de Spin
20.
Brain Sci ; 10(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846874

RESUMO

Synuclein (α, ß, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, ß, and γ; αßγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αßγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA