Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Divers ; 27(5): 2345-2352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36752999

RESUMO

This paper describes the development of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate compound as a heterocyclic enols containing a Michael acceptor so that it participates in an Ugi-type multicomponent condensation through a Smiles rearrangement in replacement of acid components. The new four-component containing 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate, aldehyde derivatives, amine derivatives and isocyanides process leads readily and efficiently to heterocyclic enamines. This report is an outstanding strategy for the preparation of new biologically structures containing peptidic or pseudo-peptidic with quinolin-2(1H)-one scaffolds.


Assuntos
Aminoácidos , Ácidos Carboxílicos , Aldeídos
2.
Arch Pharm (Weinheim) ; 356(6): e2200571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017555

RESUMO

A new series of indole-carbohydrazide-phenoxy-N-phenylacetamide derivatives 7a-l were designed, synthesized, and screened for their α-glucosidase inhibitory abilities and cytotoxic effects. The results obtained in the α-glucosidase inhibition assay indicated that most of the synthesized derivatives displayed good to moderate inhibitory abilities (Ki values ranging from 14.65 ± 2.54 to 37.466 ± 6.46 µM) when compared with the standard drug acarbose (Ki = 42.38 ± 5.73 µM). Among them, 2-mehoxy-phenoxy derivatives 7l and 7h with 4-nitro and 4-chloro substituents on the phenyl ring of the N-phenylacetamide moiety, respectively, displayed the most inhibition effects. The inhibitory mechanism of these compounds was investigated by molecular docking studies. The in vitro cytotoxicity assay showed that only one compound, 2-methoxy-phenoxy derivative 7k with a 4-bromo substituent on the phenyl ring of the N-phenylacetamide moiety, exhibited moderate cytotoxicity against the human non-small-cell lung cancer cell line A549 and the rest of the compounds show almost no cytotoxicity. Further cytotoxic evaluations were also performed on compound 7k. The in silico pharmacokinetic study predicted that the selected compounds 7l and 7h are likely to be orally active.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Indóis/farmacologia
3.
Mol Divers ; 26(4): 1995-2009, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34515954

RESUMO

A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC50 values in the range of 6.31 to 49.89 µM compared to standard drug acarbose (IC50 = 750.0 ± 10.0 µM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Acetamidas , Inibidores de Glicosídeo Hidrolases/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/química , Triazóis/química , alfa-Glucosidases/química
4.
Chem Biodivers ; 19(7): e202100964, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35675562

RESUMO

Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 µM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/química , Hidrazinas , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
5.
Arch Pharm (Weinheim) ; 355(5): e2100313, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35132681

RESUMO

A series of novel 4-phenylpiperazine-carbodithioate-N-phenylacetamide hybrids (6a-n) was designed, synthesized, and evaluated for their in vitro inhibitory activity against the metabolic enzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase. The obtained results showed that most of the synthesized compounds exhibited high to good anti-AChE and anti-BChE activity in the range of nanomolar concentrations in comparison to tacrine as a positive control. Molecular modeling of the most potent compounds 6e and 6i demonstrated that these compounds interacted with important residues of the AChE and BChE active sites. Moreover, all the newly synthesized compounds 6a-n had significant Ki values against α-glucosidase when compared with the positive control acarbose. Representatively, N-2-fluorophenylacetamide derivative 6l, with a Ki value of 0.98 nM as the most potent compound, was 126 times more potent than acarbose with a Ki value of 123.70 nM. This compound also fitted in the α-glucosidase active site and interacted with key residues. An in silico study of the druglikeness/absorption, distribution, metabolism, and excretion (ADME)/toxicity profile of the selected compounds 6e, 6i, and 6l predicts that these compounds are drug-like and have the appropriate properties in terms of ADME and toxicity.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acarbose , Acetanilidas , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Piperazinas , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
6.
Bioorg Med Chem ; 36: 116044, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640246

RESUMO

Melanin pigment and melanogenesis are a two-edged sword. Melanin has a radioprotection role while melanogenesis has undesirable effects. Targeting the melanogenesis pathway, a series of kojyl thioether conjugated to different quinazolinone derivatives were designed, synthesized, and evaluated for their inhibitory activity against mushroom tyrosinase. All the synthesized compounds were screened for their anti-tyrosinase activity and all derivatives displayed better potency than kojic acid as the positive control. In this regard, 5j and 5h as the most active compounds showed an IC50 value of 0.46 and 0.50 µM, respectively. In kinetic evaluation against tyrosinase, 5j depicted an uncompetitive inhibition pattern. Designed compounds also exhibited mild antioxidant capacity. Moreover, 5j and 5h achieved good potency against the B16F10 cell line to reduce the melanin content, whilst showing limited toxicity against malignant cells. The proposed binding mode of new inhibitors evaluated through molecular docking was consistent with the results of structure-activity relationship analysis.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pironas/farmacologia , Quinazolinonas/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Picratos/antagonistas & inibidores , Pironas/síntese química , Pironas/química , Quinazolinonas/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
7.
Bioorg Chem ; 114: 104979, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140181

RESUMO

A series of aryl phenoxy methyl triazole conjugated with thiosemicarbazides were designed, synthesized, and evaluated for their tyrosinase inhibitory activities in the presence of l-dopa and l-tyrosine as substrates. All the compounds showed tyrosinase inhibition in the sub-micromolar concentration. Among the derivatives, compound 9j bearing benzyl displayed exceptionally high potency against tyrosinase with IC50 value of 0.11 µM and 0.17 µM in the presence of l-tyrosine and l-dopa as substrates which is significantly lower than that of kojic acid as the positive control with an IC50 value of 9.28 µM for l-tyrosine and 9.30 µM for l-dopa. According to Lineweaver-Burk plot, 9j demonstrated an uncompetitive type of inhibition in the kinetic assay. Also, in vitro antioxidant activities determined by DPPH assay recorded an IC50 value of 68.43 µM for 9i. The melanin content of 9j was determined on B16F10 melanoma human cells which demonstrated a significant reduction of the melanin content. Moreover, the binding energies corresponding to the same ligand as well as computer-aided drug-likeness and pharmacokinetic studies were also carried out. Compound 9j also possessed metal chelation potential correlated to its high anti-TYR activity.


Assuntos
Acetamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Semicarbazidas/farmacologia , Preparações Clareadoras de Pele/farmacologia , Triazóis/farmacologia , Acetamidas/síntese química , Acetamidas/metabolismo , Acetamidas/farmacocinética , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/metabolismo , Quelantes/farmacocinética , Quelantes/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Ligação Proteica , Semicarbazidas/síntese química , Semicarbazidas/metabolismo , Semicarbazidas/farmacocinética , Preparações Clareadoras de Pele/síntese química , Preparações Clareadoras de Pele/metabolismo , Preparações Clareadoras de Pele/farmacocinética , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/farmacocinética
8.
Bioorg Chem ; 109: 104703, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609917

RESUMO

A series of new quinazolinone-dihydropyrano[3,2-b]pyran derivatives 10A-L were synthesized by simple chemical reactions and were investigated for inhibitory activities against α-glucosidase and α-amylase. New synthesized compounds showed high α-glucosidase inhibition effects in comparison to the standard drug acarbose and were inactive against α-amylase. Among them, the most potent compound was compound 10L (IC50 value = 40.1 ± 0.6 µM) with inhibitory activity around 18.75-fold more than acarboase (IC50 value = 750.0 ± 12.5 µM). This compound was a competitive inhibitor into α-glucosidase. Our obtained experimental results were confirmed by docking studies. Furthermore, the cytotoxicity of the most potent compounds 10L, 10G, and 10N against normal fibroblast cells and in silico druglikeness, ADME, and toxicity prediction of these compounds were also evaluated.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Piranos/química , Piranos/farmacologia , alfa-Glucosidases/metabolismo , Células Cultivadas , Desenho de Fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacocinética , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Piranos/síntese química , Piranos/farmacocinética
9.
Arch Pharm (Weinheim) ; 354(12): e2100179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34467580

RESUMO

Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.


Assuntos
Acetanilidas/farmacologia , Cumarínicos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Acarbose/farmacologia , Acetanilidas/síntese química , Acetanilidas/química , Animais , Células CACO-2 , Cumarínicos/síntese química , Cumarínicos/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ratos , Relação Estrutura-Atividade
10.
Arch Pharm (Weinheim) ; 353(10): e2000109, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32643792

RESUMO

Coumarins and their derivatives are receiving increasing attention due to numerous biochemical and pharmacological applications. In this study, a series of novel coumarin-1,2,3-triazole-acetamide hybrids was tested against some metabolic enzymes including α-glycosidase (α-Gly), α-amylase (α-Amy), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), human carbonic anhydrase I (hCA I), and hCA II. The new coumarin-1,2,3-triazole-acetamide hybrids showed Ki values in the range of 483.50-1,243.04 nM against hCA I, 508.55-1,284.36 nM against hCA II, 24.85-132.85 nM against AChE, 27.17-1,104.36 nM against BChE, 590.42-1,104.36 nM against α-Gly, and 55.38-128.63 nM against α-Amy. The novel coumarin-1,2,3-triazole-acetamide hybrids had effective inhibition profiles against all tested metabolic enzymes. Also, due to the enzyme inhibitory effects of the new hybrids, they are potential drug candidates to treat diseases such as epilepsy, glaucoma, type-2 diabetes mellitus (T2DM), Alzheimer's disease (AD), and leukemia. Additionally, these inhibition effects were compared with standard enzyme inhibitors like acetazolamide (for hCA I and II), tacrine (for AChE and BChE), and acarbose (for α-Gly and α-Amy). Also, those coumarin-1,2,3-triazole-acetamide hybrids with the best inhibition score were docked into the active site of the indicated metabolic enzymes.


Assuntos
Acetamidas/farmacologia , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Triazóis/farmacologia , Acetamidas/síntese química , Acetamidas/química , Cumarínicos/síntese química , Cumarínicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
11.
Int J Biol Macromol ; 262(Pt 1): 129931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331079

RESUMO

Wound infection is still an important challenge in healing of different types of skin injuries. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action. In this study, by electrospinning process Tanacetum polycephalum essential oil (EO), as a natural antibacterial and anti-inflammatory agent, along with Amoxicillin (AMX) as an antibiotic are incorporated into PVA/gelatin-based nanofiber mats individually and in combination to fabricate a novel wound dressing. Briefly, we fabricated PVA/gelatin loaded by Amoxicillin as first layer for direct contact with wound surface to protects the wound from exogenous bacteria, and then built a PVA/gelatin/Tanacetum polycephalum essential oil layer on the first layer to help cleanses the wound from infection and accelerates wound closure. Finally, PVA/gelatin layer as third layer fabricated on middle layer to guarantee desirable mechanical properties. For each layer, the electrospinning parameters were adjusted to form bead-free fibers. The morphology of fabricated nanofiber scaffolds was characterized by Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM). Microscopic images demonstrated the smooth bead-free microstructures fabrication of every layer of nanofiber with a uniform fiber size of 126.888 to 136.833 nm. While, EO and AMX increased the diameter of nanofibers but there was no change in physical structure of nanofiber. The water contact angle test demonstrated hydrophilicity of nanofibers with 47.35°. Although EO and AMX had little effect on reducing hydrophilicity but nanofibers with contact angle between 51.4° until 65.4° are still hydrophilic. Multilayer nanofibers loaded by EO and AMX killed 99.99 % of both gram-negative and gram-positive bacteria in comparison with control and PVA/gelatin nanofiber. Also, in addition to confirming the non-toxicity of nanofibers, MTT results also showed the acceleration of cell proliferation. In vivo wound evaluation in mouse models showed that designed nanofibrous scaffolds could be an appropriate option for wound treatment due to their positive effect on angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound closure.


Assuntos
Nanofibras , Óleos Voláteis , Camundongos , Animais , Amoxicilina/farmacologia , Engenharia Tecidual , Nanofibras/química , Gelatina/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Alicerces Teciduais/química , Álcool de Polivinil/química
12.
Heliyon ; 9(5): e15886, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206030

RESUMO

A magnetic poly (1,8-diaminonaphthalene)-nickel (PDAN-Ni@Fe3O4) composite as a multifunctional nanocatalyst was prepared in several steps including (I) synthesis of poly (1,8-diaminonaphthalene) (PDAN), (II) modification of PDAN with NiSO4 (PDAN-Ni) and (III) preparation of magnetic nanocatalyst by iron (I and II) salts in the existence of PDAN-Ni complex (PDAN-Ni@Fe3O4). Fourier-transform infrared spectroscopy (FTIR), elemental analysis (CHNSO), vibrating-sample magnetometer (VSM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), field emission scanning electron microscope (FESEM), ultraviolet-visible (UV-vis), and thermogravimetric analysis (TGA) were applied to characterize the prepared nanocatalyst. The PDAN-Ni@Fe3O4 was applied as an environmentally friendly nanocatalyst for the isoxazole-5(4H)-ones synthesis via a one-pot reaction between aryl/heteroaryl aldehyde, hydroxylamine hydrochloride, and ß-ketoester. The nanocomposite was also used for the synthesis of some new alkylene bridging bis 4-benzylidene-3-methyl isoxazole-5(4H)-ones. The catalyst's reusability, and the antioxidant and antibacterial activities of both catalyst and products, were studied. Results showed that the nanocatalyst and isoxazole-5(4H)-ones have antioxidant activity of 75% and 92%, respectively. In addition, the antibacterial test showed that the nanocatalyst and isoxazole-5(4H)-ones have highly active versus Staphylococcus aureus and Escherichia coli bacteria. The reusability and stability of the nanocatalyst, a medium to higher product yield and conversion, a faster reaction time, and the use of green solvents were a few benefits of this study.

13.
BMC Chem ; 17(1): 56, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37316931

RESUMO

BACKGROUND: A new series of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide hybrids 11a-o was designed based on molecular hybridization of the active pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized and evaluated against α-glucosidase. METHODS: The 15 various derivatives of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide scaffold were synthesized, purified, and fully characterized. These derivatives were evaluated against yeast α-glucosidase in vitro and in silico. ADMET properties of the most potent compounds were also predicted. RESULTS: All new derivatives 11a-o (IC50 values = 6.31 ± 0.03-49.89 ± 0.09 µM) are excellent α-glucosidase inhibitors in comparison to acarbose (IC50 value = 750.0 ± 10.0 µM) that was used as a positive control. Representatively, (E)-2-(4-((4-((2-(1H-indole-2-carbonyl)hydrazono)methyl) phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-methoxyphenyl)acetamide 11d with IC50 = 6.31 µM against MCF-7 cells, was 118.8-times more potent than acarbose. This compound is an uncompetitive inhibitor against α-glucosidase and showed the lowest binding energy at the active site of this enzyme in comparison to other potent compounds. Furthermore, computational calculations predicted that compound 11d can be an orally active compound. CONCLUSION: According to obtained data, compound 11d can be a valuable lead compound for further structural development and assessments to obtain effective and potent new α-glucosidase inhibitors.

14.
RSC Adv ; 13(28): 19243-19256, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377867

RESUMO

In this work, a new series of quinoline-quinazolinone-thioacetamide derivatives 9a-p were designed using a combination of effective pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized by simple chemical reactions and evaluated for their anti-α-glucosidase activity. Among the tested compounds, compounds 9a, 9f, 9g, 9j, 9k, and 9m demonstrated significant inhibition effects in comparison to the positive control acarbose. Particularly, compound 9g with inhibitory activity around 83-fold more than acarbose exhibited the best anti-α-glucosidase activity. Compound 9g showed a competitive type of inhibition in the kinetic study, and the molecular simulation studies demonstrated that this compound with a favorable binding energy occupied the active site of α-glucosidase. Furthermore, in silico ADMET studies of the most potent compounds 9g, 9a, and 9f were performed to predict their drug-likeness, pharmacokinetic, and toxicity properties.

15.
Sci Rep ; 13(1): 10030, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340010

RESUMO

An important target in the treatment of type 2 diabetes is α-glucosidase. Inhibition of this enzyme led to delay in glucose absorption and decrease in postprandial hyperglycemia. A new series of phthalimide-phenoxy-1,2,3-triazole-N-phenyl (or benzyl) acetamides 11a-n were designed based on the reported potent α-glucosidase inhibitors. These compounds were synthesized and screened for their in vitro inhibitory activity against the latter enzyme. The majority of the evaluated compounds displayed high inhibition effects (IC50 values in the range of 45.26 ± 0.03-491.68 ± 0.11 µM) as compared to the positive control acarbose (IC50 value = 750.1 ± 0.23 µM). Among this series, compounds 11j and 11i represented the most potent α-glucosidase inhibitory activities with IC50 values of 45.26 ± 0.03 and 46.25 ± 0.89 µM. Kinetic analysis revealed that the compound 11j is a competitive inhibitor with a Ki of 50.4 µM. Furthermore, the binding interactions of the most potent compounds in α-glucosidase active site were studied through molecular docking and molecular dynamics. The latter studies confirmed the obtained results through in vitro experiments. Furthermore, in silico pharmacokinetic study of the most potent compounds was also performed.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Acetamidas/farmacologia , Triazóis/farmacologia , Cinética , Hipoglicemiantes/química , Inibidores de Glicosídeo Hidrolases/química , Ftalimidas/farmacologia , Estrutura Molecular
16.
Sci Rep ; 12(1): 2003, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132095

RESUMO

The present article describes the design, synthesis, in vitro urease inhibition, and in silico molecular docking studies of a novel series of nitrothiazolacetamide conjugated to different thioquinazolinones. Fourteen nitrothiazolacetamide bearing thioquinazolinones derivatives (8a-n) were synthesized through the reaction of isatoic anhydride with different amine, followed by reaction with carbon disulfide and KOH in ethanol. The intermediates were then converted into final products by treating them with 2-chloro-N-(5-nitrothiazol-2-yl)acetamide in DMF. All derivatives were then characterized through different spectroscopic techniques (1H, 13C-NMR, MS, and FTIR). In vitro screening of these molecules against urease demonstrated the potent urease inhibitory potential of derivatives with IC50 values ranging between 2.22 ± 0.09 and 8.43 ± 0.61 µM when compared with the standard thiourea (IC50 = 22.50 ± 0.44 µM). Compound 8h as the most potent derivative exhibited an uncompetitive inhibition pattern against urease in the kinetic study. The high anti-ureolytic activity of 8h was confirmed against two urease-positive microorganisms. According to molecular docking study, 8h exhibited several hydrophobic interactions with Lys10, Leu11, Met44, Ala47, Ala85, Phe87, and Pro88 residues plus two hydrogen bound interactions with Thr86. According to the in silico assessment, the ADME-Toxicity and drug-likeness profile of synthesized compounds were in the acceptable range.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Quinazolinonas , Urease , Aminas/química , Dissulfeto de Carbono/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Etanol/química , Hidróxidos/química , Simulação de Acoplamento Molecular , Oxazinas/química , Compostos de Potássio/química , Urease/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/química , Quinazolinonas/farmacologia
17.
J Biomol Struct Dyn ; 40(8): 3359-3370, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33222620

RESUMO

In the design of novel drugs, the formation of hybrid molecules via the combination of several pharmacophores can give rise to compounds with interesting biochemical profiles. A series of novel quinazolin-sulfonamid derivatives (9a-m) were synthesized, characterized and evaluated for their in vitro antidiabetic, anticholinergics, and antiepileptic activity. These synthesized novel quinazolin-sulfonamid derivatives (9a-m) were found to be effective inhibitor molecules for the α-glycosidase, human carbonic anhydrase I and II (hCA I and hCA II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzyme, with Ki values in the range of 100.62 ± 13.68-327.94 ± 58.21 nM for α-glycosidase, 1.03 ± 0.11-14.87 ± 2.63 nM for hCA I, 1.83 ± 0.24-15.86 ± 2.57 nM for hCA II, 30.12 ± 3.81-102.16 ± 13.87 nM for BChE, and 26.16 ± 3.63-88.52 ± 20.11 nM for AChE, respectively. In the last step, molecular docking calculations were made to compare biological activities of molecules against enzymes which are achethylcholinesterase, butyrylcholinesterase and α-glycosidase.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Glicosídeo Hidrolases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
Sci Rep ; 12(1): 14870, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050498

RESUMO

The control of postprandial hyperglycemia is an important target in the treatment of type 2 diabetes mellitus (T2DM). As a result, targeting α-glucosidase as the most important enzyme in the breakdown of carbohydrates to glucose that leads to an increase in postprandial hyperglycemia is one of the treatment processes of T2DM. In the present work, a new class of benzimidazole-Schiff base hybrids 8a-p has been developed based on the potent reported α-glucosidase inhibitors. These compounds were synthesized by sample recantations, characterized by 1H-NMR, 13C-NMR, FT-IR, and CHNS elemental analysis, and evaluated against α-glucosidase. All new compounds, with the exception of inactive compound 8g, showed excellent inhibitory activities (60.1 ± 3.6-287.1 ± 7.4 µM) in comparison to acarbose as the positive control (750.0 ± 10.5). Kinetic study of the most potent compound 8p showed a competitive type of inhibition (Ki value = 60 µM). In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the title new compounds over the active site of α-glucosidase. In silico druglikeness analysis and ADMET prediction of the most potent compounds demonstrated that these compounds were druglikeness and had satisfactory ADMET profile.


Assuntos
Benzimidazóis , Hiperglicemia , Bases de Schiff , alfa-Glucosidases , Benzimidazóis/química , Benzimidazóis/farmacologia , Domínio Catalítico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
19.
BMC Chem ; 16(1): 57, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35909126

RESUMO

A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.

20.
Int J Biol Macromol ; 170: 1-12, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352155

RESUMO

In this study, novel quinazolinone derivatives 7a-n were synthesized and evaluated against metabolic enzymes including α-glycosidase, acetylcholinesterase, butyrylcholinesterase, human carbonic anhydrase I, and II. These compounds exhibited high inhibitory activities in comparison to used standard inhibitors with Ki values in the range of 19.28-135.88 nM for α-glycosidase (Ki value for standard inhibitor = 187.71 nM), 0.68-23.01 nM for acetylcholinesterase (Ki value for standard inhibitor = 53.31 nM), 1.01-29.56 nM for butyrylcholinesterase (Ki value for standard inhibitor = 58.16 nM), 10.25-126.05 nM for human carbonic anhydrase I (Ki value for standard inhibitor = 248.18 nM), and 13.46-178.35 nM for human carbonic anhydrase II (Ki value for standard inhibitor = 323.72). Furthermore, the most potent compounds against each enzyme were selected in order to evaluate interaction modes of these compounds in the active site of the target enzyme. Cytotoxicity assay of the title compounds 7a-n against cancer cell lines MCF-7 and LNCaP demonstrated that these compounds do not show significant cytotoxic effects.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/química , Inibidores de Glicosídeo Hidrolases/química , Quinazolinonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/toxicidade , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/toxicidade , Humanos , Cinética , Células MCF-7 , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias da Próstata/patologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Quinazolinonas/toxicidade , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA