Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Tissue Res ; 382(3): 575-583, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32715374

RESUMO

Neural tissue engineering has been introduced as a novel therapeutic strategy for traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) has been demonstrated to improve functional outcome of brain injury, and RADA4GGSIKVAV (R-GSIK), a self-assembling nano-peptide scaffold, has been suggested to promote the behavior of stem cells. This study was designed to determine the ability of the R-GSIK scaffold in supporting the effects of MSCs on motor function activity and inflammatory responses in an experimental TBI model. A significant recovery of motor function was observed in rats that received MSCs+R-GSIK compared with the control groups. Further analysis showed a reduction in the number of reactive astrocytes and microglial cells in the MSCs and MSCs+R-GSIK groups compared with the control groups. Furthermore, western blot analysis indicated a significant reduction in pro-inflammatory cytokines, such as TLR4, TNF, and IL6, in the MSCs and MSCs+R-GSIK groups compared with the TBI, vehicle, and R-GSIK groups. Overall, this study strengthens the idea that the co-transplantation of MSCs with R-GSIK can increase functional outcomes by preparing a beneficial environment. This improvement may be explained by the immunomodulatory effects of MSCs and the self-assembling nano-scaffold peptide.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Peptídeos/administração & dosagem , Alicerces Teciduais/normas , Animais , Lesões Encefálicas Traumáticas/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
2.
Cancer Cell Int ; 20: 380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782438

RESUMO

BACKGROUND: Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic characteristics of NDV against cervical cancer. Next, we added anti-PD-1 mAb to our therapeutic recipe to assess the complementary role of immune checkpoint blockade in curbing tumor progression. METHODS: For this purpose, TC-1 tumor cells were injected into the mice models and treatment with NDV, iNDV, HA2, NDV-HA2, iNDV-HA2 began 10 days after tumor challenge and was repeated at day 17. In addition, PD-1 blockade was conducted by injection of anti-PD-1 mAb at days 9 and 16. Two weeks after the last treatment, sample mice were sacrificed and treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, tumors condition was monitored weekly for 6 weeks intervals and the tumor volume was measured and compared within different groups. RESULTS: The results of co-treatment with NDV and HA2 gene revealed that these agents act synergistically to induce antitumor immune responses against HPV-associated carcinoma by enhancement of E7-specific lymphocyte proliferation, inducement of CD8+ T cell cytotoxicity responses, increase in splenic cytokines and granzyme B, decrease in immunosuppressive cytokines and E6 oncogene expression, and upregulation of apoptotic proteins expression, in comparison with control groups. Moreover, incorporation of PD-1 blockade as the third side of our suggested therapy led to noticeable regression in tumor size and augmentation of cytokine responses. CONCLUSIONS: The invaluable results of synergy between NDV virotherapy and HA2 gene therapy suggest that tumor-selective cell killing by oncolytic NDV can be enhanced by combining with FMG gene therapy. Moreover, the adjunction of the PD-1 blockade proves that checkpoint blockade can be considered as an effective complementary therapy for the treatment of cervical cancer.

3.
J Cell Physiol ; 234(8): 13773-13780, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30666656

RESUMO

The critical role of Notch signaling has been shown in the pathogenesis of some neurological disorders including schizophrenia, epilepsy and Alzheimer's disease. This study was aimed to evaluate the role of Notch 1 receptor in epileptogenesis as well as seizure characteristics. The animals were divided into three groups of sham, early stage and end stage. In sham group: Normal saline was injected intraperitoneally (ip) in the same as protocol of pentylenetetrazol (PTZ) injection. PTZ was injected (ip) every 48 hr over a period of 1 week in the group of early stage and over a period of 4 weeks in the end stage. The gene expression as well as distribution of Notch 1 receptor was assessed in the parietal cortex and hippocampus. In addition, the effect of agonist or antagonist of Notch 1 receptor was assessed on the epileptic discharges induced by PTZ injection. The gene expression of Notch 1 decreased in the hippocampus significantly in the end-stage group compared with sham, and early groups. Furthermore, distribution of Notch 1 receptor increased in the somatosensory cortex and decreased in the CA1 hippocampal area in the end-stage group. Intraventricular microinjection of Notch 1 agonist significantly increased the amplitude as well as frequency of spikes and decreased the latency of first epileptic discharges. Our findings illustrate the critical role of Notch signalling as a potential pathway in the epileptogenesis during development of chronic seizures.


Assuntos
Encéfalo/metabolismo , Receptor Notch1/metabolismo , Convulsões/metabolismo , Animais , Doença Crônica , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
4.
Front Pharmacol ; 13: 932487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339604

RESUMO

Ion disturbances are among the most remarkable deficits in spinal cord injury (SCI). GABA is an integral part of neural interaction. Action of the GABAA receptor depends on the amount of intracellular chloride. Homeostasis of chloride is controlled by two co-transporters, NKCC1 and KCC2. Previous studies revealed that NKCC1 are disturbed in SCI. In this study, NKCC1 is highly expressed in the epicenter of the lesioned spinal cord at 3 hours after induction of the lesion and reached the peak around 6 hours after SCI. Bumetanide (2 and 4 mg/day), as a specific NKCC1 inhibitor, was used at 3 hours post SCI for 28 days. The functional recovery outcomes were measured by the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, ladder walking test, and hot plate test. The rats that received bumetanide 4 mg/day exhibited improved recovery of locomotor function, reduction of NKCC1 gene expression, and upregulation of GAP protein levels 28 days post SCI. Histological tissue evaluations confirmed bumetanide's neuroprotective and regenerative effects. This study provides novel evidence for the benefits of bumetanide in early administration after SCI.

5.
Iran J Basic Med Sci ; 21(11): 1155-1160, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30483389

RESUMO

OBJECTIVES: Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal tissues. However, little data are available on hNS/PCs obtained from the adult human amygdala. MATERIALS AND METHODS: The present study explored the capacity of the amygdala harvested from resected brain tissues of patients with medically refractory epilepsy to generate neurosphere-like bodies and motor neuron-like cells. RESULTS: Although the proliferation process was slow, a considerable amount of cells was obtained after the 3rd passage. In addition, the cells could generate motor neuron-like cells under appropriate culture conditions. CONCLUSION: Isolation and culture of these cells enable us to improve our knowledge of the role of the amygdala in some neurological and psychological disorders and provide a novel source for therapeutic cell transplantation.

6.
Mol Neurobiol ; 55(12): 9122-9138, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29651746

RESUMO

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Among different cell types, human neural stem cells cultured in self-assembling peptide scaffolds have been suggested as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/PCs) derived from epileptic human brain and human adipose-derived stromal/stem cells (hADSCs) seeded in PuraMatrix hydrogel (PM) on brain function after TBI in an animal model of brain injury. hNS/PCs were isolated from patients with medically intractable epilepsy undergone epilepsy surgery. hNS/PCs and hADSCs have the potential for proliferation and differentiation into both neuronal and glial lineages. Assessment of the growth characteristics of hNS/PCs and hADSCs revealed that the hNS/PCs doubling time was significantly longer and the growth rate was lower than hADSCs. Transplantation of hNS/PCs and hADSCs seeded in PM improved functional recovery, decreased lesion volume, inhibited neuroinflammation, and reduced the reactive gliosis at the injury site. The data suggest the transplantation of hNS/PCs or hADSCs cultured in PM as a promising treatment option for cell replacement therapy in TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Encéfalo/patologia , Epilepsia/patologia , Nanopartículas/química , Células-Tronco Neurais/transplante , Peptídeos/química , Alicerces Teciduais/química , Tecido Adiposo/citologia , Adulto , Animais , Biomarcadores/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Gliose/patologia , Gliose/fisiopatologia , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Ratos , Células Estromais/citologia
7.
Brain Struct Funct ; 222(6): 2773-2785, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28210849

RESUMO

Childhood absence epilepsy (CAE) is an epilepsy syndrome with seizures occurring in the early childhood, highlighting that seizures susceptibility in CAE is dependent on brain development. The Notch 1 signalling pathway is important in brain development, yet the role of the Notch1 signalling pathway in CAE remains elusive. We here explored Notch1 and its modulator notchless homologue 1 (NLE1) expression in WAG/Rij and control rats using immunohistochemistry. Functional Notch 1 effects were assessed in WAG/Rij rats in vivo. WAG/Rij rats lack the developmental increase in cortical Notch1 and NLE 1 mRNA expression seen in controls, and Notch 1 and NLE1 mRNA and protein expression were lower in somatosensory cortices of WAG/Rij rats when compared to controls. This coincided with an overall decreased cortical GFAP expression in the early development in WAG/Rij rats. These effects were region-specific as they were not observed in thalamic tissues. Neuron-to-glia ratio as a marker of the impact of Notch signalling on differentiation was higher in layer 4 of somatosensory cortex of WAG/Rij rats. Acute application of Notch 1 agonist Jagged 1 suppressed, whereas DAPT, a Notch antagonist, facilitated spike and wave discharges (SWDs) in WAG/Rij rats. These findings point to Notch1 as an important signalling pathway in CAE which likely shapes architectural organization of the somatosensory cortex, a region critically involved in developmental epileptogenesis in CAE. More immediate effects of Notch 1 signalling are seen on in vivo SWDs in CAE, pointing to the Notch 1 pathway as a possible treatment target in CAE.


Assuntos
Epilepsia Tipo Ausência/genética , Proteínas dos Microfilamentos/metabolismo , Receptor Notch1/metabolismo , Córtex Somatossensorial/metabolismo , Fatores Etários , Animais , Antígenos Nucleares/metabolismo , Ondas Encefálicas , Modelos Animais de Doenças , Eletrocorticografia , Epilepsia Tipo Ausência/metabolismo , Epilepsia Tipo Ausência/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Proteína Jagged-1/administração & dosagem , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch1/efeitos dos fármacos , Receptor Notch1/genética , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/fisiopatologia , Tálamo/metabolismo , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA